

Stability and bonding in the ground and excited states of lithium fluoride $\text{Li}_n \text{F}$ clusters

Somnath Bhowmick, Denis Hagebaum-Reignier, Gwang-Hi Jeung

Chimie ThéOrique et Modèles (CTOM), Institut des Sciences Moléculaires de Marseille, France

> GdR Correl meeting, Marseilles 8 july 2015

Outline

Hyperlithiated clusters

Insertion mechanism and bonding in $\rm Li_2F/F^-$

Low-lying states of Li_nF clusters

Concluding remarks

Hyperlithiated clusters

- Hyperlithiated clusters Li₃O, Li₄O, Li₅O first observed in the gas phase (1980's)
- "Are CLi₆, NLi₅, OLi₄ ...hypervalent?" (Schleyer, 1983)
 ⇒ Hyperlithiated ALi_n molecules : A⁻ in a metallic Li⁺_n cage

Hyperlithiated clusters

- Hyperlithiated clusters Li₃O, Li₄O, Li₅O first observed in the gas phase (1980's)
- "Are CLi₆, NLi₅, OLi₄ ...hypervalent?" (Schleyer, 1983)
 - \Rightarrow Hyperlithiated ALi_n molecules : A⁻ in a metallic Li⁺_n cage
- Hyperlithiated clusters are "superalkalis" (Boldyrev et al., 1982) ⇒ very low I.Ps ($\simeq 4.0 \text{ eV}$) << I.P of Li atom (5.4 eV)
- Building blocks for novel materials with unique properties (magnetism, non-linear optics ...)

Lithium fluoride clusters Motivations

- Experimental evidence of $\text{Li}_n \text{F}$ clusters with n = 2 6 (2000's)
- Model for the study of adsorption on a metallic surface : role of excited states ?

- Covalent and ionic interactions are expected along the reaction path \Rightarrow multireference methods (CASSCF, MRCI-F12)
- $Li_2 + F \rightarrow Li_2F$: possible candidate for ultracold temperature reactions (Lane et al., 2010). Insertion mechanism?
- $\text{Li}_2 + \text{F}^- \rightarrow \text{Li}_2\text{F}^-$? no study so far

CAS(8,9)/MRCI-F12, AVTZ

Bond analysis of the low-lying states of Li_2F^-

- \checkmark The ground state is linear, the excited states are bent
- \checkmark The triplet states are mono-configurational, the singlets are multi-configurational

 $\Rightarrow 3c/4e^- \hat{\sigma}$ type "long bonding" ^a as in Li–Be–Li : L··A····L' $\iff L^{'}A^{'}L'$

a. C. Landis & F. Weinhold, Inorg. Chem. 52, 2013, 5154

S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung

Low-lying states of $\text{Li}_n \text{F}$ clusters Choice of clusters and method

- The Li_n clusters correspond to a (100) plane of the bcc crystal (r=3.51Å)
- The $\operatorname{Li}_n F/F^-$ clusters have a C_{2v} symmetry
- Method : CAS(n+5,11)/MRCI, AVTZ ECP for n = 8

Bridge and on-top adsorption sites

Low-lying states of Li_nF clusters

Low-lying states of Li_nF clusters

Vertical excitation energies

Low-lying states of $\text{Li}_n \text{F}$ clusters Stabilization energies

- $\operatorname{Li}_n F$ clusters are more stabilized than $\operatorname{Li}_n F^-$ clusters
- Bridge positions are favoured
- The second layer is stabilizing

Concluding remarks

- ✓ Lithium fluoride clusters display charge-transfer properties, covalent/ionic interactions
- \checkmark Correlated *ab initio* methods are needed to properly describe their dissociation
- \checkmark Ground and excited states of $\rm Li_2F$ and $\rm Li_2F^-$ display unusual electronic structures
- \checkmark Existence of low-lying states (< 0.5 eV above the GS) in Li_nF clusters
- \checkmark Strong stabilization of the ${\rm Li}_n{\rm F}$ clusters

Future work

- Bonding and dipole moment analysis of Li_nF clusters
- The computation of the excited states on bigger ${\rm Li}_n {\rm F}~(n>10)$ clusters is ongoing
- Computation of first ionization (neutral) and detachment (anionic) energies \rightarrow superalkalis
- Valence-Bond description of the excited states of the small complexes → projection method developped in our group (J. Racine & S. Humbel)

Aknowledgments

Aix*Marseille

ctom*

- Somnath Bhowmick (PhD)
- Julien Racine (PhD)
- Paola Nava
- Yannick Carissan
- Jean-Marc Mattalia
- Gwang-Hi Jeung
- Stéphane Humbel

Optimized states of Li_2F and Li_2F^-

Bond analysis of the low-lying states of $\mathrm{Li}_2\mathrm{F}$

- ✓ The low-lying states are mono-configurational
- \checkmark The ground state is bent, the excited states are linear

Li_2F potential energy surfaces

S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung

Li_2F potential energy surfaces

Li_2F^- potential energy surfaces

