Quantum Monte Carlo study of protonated water dimer A simple model of proton transfer in water

Mario Dagrada

Coauthors: Michele Casula, Antonino Marco Saitta, Sandro Sorella and Francesco Mauri

> Institute de Minèralogie et de Physique des Milieux Condensès Université Pierre et Marie Curie

> > 28/11/2013

2 Highly correlated QMC approach

Proton transfer in water

Proton transfer in water and aqueous systems is an ubiquitous phenomenon \Rightarrow relevant in a wide range of fields:

- basic mechanism of charge transfer in cells membranes
- important role in several enzymathic reactions
- design and application of efficient fuel cells

Despite its importance a **detailed and quantitative explanation** of the proton transfer (PT) mechanism has not been found yet.

Figure: Proton transfer in water.

Proton transfer in water

- Molecular dynamics simulations based on *ab-initio* potential energy surfaces (PESs) have not reached an agreement with experimental results. Due to:
 - Accurate description of hydrogen bonds formation, stretching and breaking is compulsory.
 - Sensitive thermal behavior \Rightarrow
 - \Rightarrow Precision of the order of 0.1 Kcal/mol is required by the PESs.

Proton transfer in water

- Molecular dynamics simulations based on *ab-initio* potential energy surfaces (PESs) have not reached an agreement with experimental results. Due to:
 - Accurate description of hydrogen bonds formation, stretching and breaking is compulsory.
 - Sensitive thermal behavior \Rightarrow
 - \Rightarrow Precision of the order of 0.1 Kcal/mol is required by the PESs.

- Precision reached by recent **highly correlated methods** such as coupled cluster (CC) technique.
- Accurate results for small systems, but simulations of larger protonated clusters is *in general* not feasible.

 $H_5O_2^+$ or Zundel ion represents the simplest model of PT in water \Rightarrow subject of many experimental and theoretical investigations.

Subject: extensive study of this model the by means of several **quantum Monte Carlo** (QMC) techniques:

- favorable scaling $\sim N^3 \Rightarrow$ simulation of larger protonated water clusters.
- **global accuracy** close to state-of-the-art CCSD(T) technique for both energetics and geometry.

<u>Goal</u>: work out and test a PES of Zundel ion which pave the way for further QMC computations on more realistic PT models.

2 Highly correlated QMC approach

QMC ansatz is the product of two factors: bosonic **Jastrow** factor and fermionic **Antisymmetrised Geminal Power** (AGP) function.

$$\Psi(\mathbf{x}_1,...,\mathbf{x}_n) = J(\mathbf{r}_1,...,\mathbf{r}_n)\Psi_{AGP}(\mathbf{x}_1,...,\mathbf{x}_n)$$
(1)

where $\{\mathbf{x}_{i} = (\mathbf{r}_{i}, \sigma_{i})\}$ are the coordinates of electron *i*.

Basis set

We employ a primitive Gaussian basis set:

$$\psi_{a,(l,m,n)}^{\text{GTO}}(\mathbf{r}) = |\mathbf{r} - \mathbf{R}_a|^l e^{-\zeta_{l,n}|\mathbf{r} - \mathbf{R}_a|^2} Z_{l,m}(\Omega_{\mathbf{r} - \mathbf{R}_a})$$
(2)

 $Z_{l,m}(\Omega) =$ spherical harmonics , $\{l,m\} =$ quantum numbers, n = gaussian index, $\zeta =$ gaussian exponents

It treats dynamical correlations associated charge fluctuations \rightarrow Van der Waals forces. Main contribution is represented by the **three/four body term** which takes into account electron-electron-ion interactions:

$$J_{3}(\mathbf{r}_{1},...,\mathbf{r}_{N}) = \exp\left(\sum_{i < j} \Phi_{J}(\mathbf{r}_{i},\mathbf{r}_{j})\right)$$
(3)

$$\Phi_{J}(\mathbf{r}_{i},\mathbf{r}_{j}) = \sum_{a,b}^{N_{\text{atoms}}} \sum_{\mu,\nu}^{N_{\text{basis}}} g_{\mu,\nu}^{a,b} \psi_{a,\mu}^{\text{GTO}}(\mathbf{r}_{i}) \psi_{b,\nu}^{\text{GTO}}(\mathbf{r}_{j})$$
(4)

where $\mu,\nu=\{l,m,n\},~N_{\rm atoms}=$ number of atoms, $N_{\rm basis}=$ total number of GTOs

It accounts for static correlations associated to nearly-degenerated electronic energy levels.

Antisymmetric product of pairing functions or <u>geminals</u> Φ(**x**_i, **x**_j) of the system.

$$\Psi_{AGP}(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \hat{A}\left[\Phi(\mathbf{x}_1,\mathbf{x}_2),\ldots\Phi(\mathbf{x}_{N-1},\mathbf{x}_N)\right]$$
(5)

$$\Phi(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{r}_i, \mathbf{r}_j) \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
(6)

• So far geminals have been expanded over the uncontracted basis set:

$$\phi(\mathbf{r}_{i},\mathbf{r}_{j}) = \sum_{a,b}^{N_{\text{atoms}}} \sum_{\mu,\nu}^{N_{\text{basis}}} \lambda_{a,b}^{\mu,\nu} \psi_{a,\mu}^{\text{GTO}}(\mathbf{r}_{i}) \psi_{b,\nu}^{\text{GTO}}(\mathbf{r}_{j})$$
(7)

where $\mu, \nu = \{l, m, n\}$, $N_{\rm atoms} =$ number of atoms, $N_{\rm basis} =$ total number of GTOs

Atomic hybrid orbitals

Set of hybrid orbitals for each atom = contraction of primitive basis which maintains atomic character:

$$\phi(\mathbf{r}_{i},\mathbf{r}_{j}) = \sum_{a,b}^{N_{\text{atoms}}} \sum_{\alpha,\beta}^{N_{\text{hyb}}} \tilde{\lambda}_{\alpha,\beta}^{a,b} \psi_{a,\alpha}^{\text{hyb}}(\mathbf{r}_{i}) \psi_{b,\beta}^{\text{hyb}}(\mathbf{r}_{j})$$

$$\psi_{a,\alpha}^{\text{hyb}}(\mathbf{r}) = \sum_{\mu} c_{\mu}^{\alpha} \psi_{a,\mu}^{\text{GTO}}(\mathbf{r})$$
(8)
(9)

where $\mu = \{l, m, n\}$, $N_{hyb} =$ number of hybrids for each atom.

- Information in local electronic structure and nuclear embedding in the compound.
- $\bullet\,$ energy loss $\leq 1\mbox{ mH}$ with respect to uncontracted expansion
- number of parameters with hybrids $P^{\text{hyb}} \propto N_{\text{hyb}}^2$ vs $P^{\text{uncontr}} \propto N_{\text{basis}}^2$ of the uncontracted expansion \Rightarrow <u>decreased of a factor 2</u> which becomes larger when system size is increased.

Computational details

Wave function optimization

Robust optimization of the wave function:

- Ansatz is generated <u>at first</u> at a density function theory level.
- Variational Monte Carlo technique is <u>then</u> applied to optimize the variational parameters of the ansatz all together.

Computational details

Wave function optimization

Robust optimization of the wave function:

- Ansatz is generated <u>at first</u> at a density function theory level.
- Variational Monte Carlo technique is <u>then</u> applied to optimize the variational parameters of the ansatz all together.

Energy computations

Energy calculations are carried out with both Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) schemes. *BFD Pseudopotentials* are employed to treat oxygen core electrons.

Computational details

Wave function optimization

Robust optimization of the wave function:

- Ansatz is generated <u>at first</u> at a density function theory level.
- Variational Monte Carlo technique is <u>then</u> applied to optimize the variational parameters of the ansatz all together.

Energy computations

Energy calculations are carried out with both Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) schemes. *BFD Pseudopotentials* are employed to treat oxygen core electrons.

Geometry computations

- <u>QMC estimators</u> allows computation of **atomic forces** as efficiently as total energy calculations.
- **Ostructure relaxation** is performed at VMC level of theory

2 Highly correlated QMC approach

Figure: C_2 -sym global minimun of Zundel ion. Main geometrical parameters (distances are in Å and angles in °) are shown in the table at the bottom. Agreement between QMC and CC is up to 0.005 Å for separations and 1° for the angle.

Method	$\mathrm{d}(O_1O_2)$	$\mathrm{d}(O_1H^+)$	$d(O_2H^+)$	$\angle O_1 H^+ O_2$	$d(O_1H_1)$	$\mathrm{d}(O_1H_2)$
DFT-PBE	2.4111	1.2074	1.2074	173.684	0.9697	0.9691
QMC	2.3847(5)	1.1930(5)	1.1942(8)	174.71(7)	0.9605(8)	0.9650(8)
$\operatorname{CCSD}(T)$	2.3864	1.1950	1.1950	173.730	0.9686	0.9682

Proton Transfer in the $H_5 O_2^+$

Figure: Proposed general mechanism of proton transfer \Rightarrow guideline to choose the reaction coordinate for the potential energy curve.

Figure: Potential energy curve of the dimer as a function of the oxygen-oxygen distance. QMC-optimized geometry is employed for every technique. CCSD(T) results are obtained from the full dimensional PES by Huang et al.¹

Mario Dagrada

Figure: Potential energy curve of the dimer at different level of theory with respect to coupled cluster energies (zero of the axis).

Figure: Potential energy curve of the dimer as a function of the oxygen-oxygen distance. QMC-optimized geometry is employed for every technique. CCSD(T) results are obtained from the full dimensional PES by Huang et al.¹

Mario Dagrada

Figure: Geometrical properties of the excess proton along the reaction coordinates at different level of theory.

Figure: Proton transfer static barrier (Kcal/mol) in the Zundel model. It is computed as difference between the two displayed configurations at different \overline{OO} distances.

Table: Values of proton transfer barriers (Kcal/mol) at different \overline{OO} separations. The first column values are computed at distance very close to the symmetry-breaking point where the barrier is very tiny, slightly above the QMC statistical error.

Method	$d(O_1O_2)$		
	2.47 Å	2.6 Å	2.7 Å
DFT-PBE	-0.74	0.19	1.94
VMC	0.28(6)	2.99(8)	5.99(8)
DMC	0.37(8)	2.64(7)	5.57(7)
CCSD(T)	0.28	2.29	5.32

2 Highly correlated QMC approach

Conclusions

What has been done

- $H_5O_2^+$, simplest model of proton transfer in water, has been investigated by means of several QMC techniques.
- energetics in excellent agreement with CCSD(T) results, up to 0.3 Kcal/mol for DMC, up to 1 Kcal/mol for VMC.
- VMC structural relaxation provides geometries remarkably close to CCSD(T).
- Key role of correlations to describe proton transfer physics in the system ⇒ important in more realistic models.

What has been done

- $H_5O_2^+$, simplest model of proton transfer in water, has been investigated by means of several QMC techniques.
- energetics in excellent agreement with CCSD(T) results, up to 0.3 Kcal/mol for DMC, up to 1 Kcal/mol for VMC.
- VMC structural relaxation provides geometries remarkably close to CCSD(T).
- Key role of correlations to describe proton transfer physics in the system ⇒ important in more realistic models.

Future directions

- Studies of more realistic models allowed by QMC favorable scaling.
- Introduction of finite temperature within QMC framework.
- Introduction of the quantum nature of protons.

THANK YOU FOR YOUR ATTENTION!

Atomic hybrid orbitals

Basis set

Jastrow: O(3s2p1d)H(2s1p) AGP: O(5s5p2d)H(4s2p)

Best set of hybrids

- Variational parameters: $P_{
 m hyb} = N_{
 m total\ hyb}^2 + N_{
 m basis} imes N_{
 m total\ hyb}$
- Benchmark Variational Monte Carlo (VMC) pseudopotential calculations on a single water molecule.
- Assess the best compromise between efficiency (number of parameters) and accuracy (variational energy) for atomic hybrid basis.

Wave function ansatz	VMC energies		number of parameters		
	Energy E (H)	$\Delta E (mH)$	$\lambda^{a,b}_{\alpha,\beta}$	det orbitals	total
JAGP (uncontracted orbitals)	-17.25389(6)	0.0	682	18	895
JAGP (hybrid orbitals: 80 5H)	-17.25302(6)	0.87(8)	171	358	724
JAGP (hybrid orbitals: 80 2H)	-17.25267(7)	1.22(9)	78	298	571
JAGP (hybrid orbitals: 40 5H)	-17.25183(6)	2.06(8)	105	238	538
JAGP (hybrid orbitals: 40 1H)	-17.25013(8)	3.7(1)	21	158	374

Figure: Modulus of the AGP eigenvalues λ_i as a function of the molecular orbital index. Calculations done for a single H_2O molecule.

Table: Pseudopotential calculations on single H_2O molecule. Test of various wave function ansatzes.

Wave function ansatz		VMC energies	
	Energy E_{x} (H)	Variance (H ²)	$E_x - E_{ m JSD}$ (mH)
JSD (uncontracted)	-17.24821(7)	0.2655(6)	0.0
JAGP (hybrid: 40 1H)	-17.25013(8)	0.2635(12)	-1.91(11)
JAGP (hybrid: 40 5H)	-17.25183(6)	0.2510(6)	-3.62(10)
JAGP (hybrid: 80 2H)	-17.25267(7)	0.2426(18)	-4.46(10)
JAGP (hybrid: 80 5H)	-17.25302(6)	0.2412(34)	-4.89(10)
JAGP (uncontracted)	-17.25389(6)	0.2296(5)	-5.68(10)

Table: DMC energy results on H_2O . JAPG provides a better description of the nodal surface of the wave function.

	pseudo	all-electron
$E_{\rm JSD}$ (H)	-17.26280(6)	-76.42475(15)
$E_{\rm JAGP}$ (H)	-17.26528(6)	-76.42690(14)
$E_{\text{JAGP}-E_{\text{JSD}}}$ (mH)	-2.48(9)	-2.15(21)

Mario Dagrada

More realistic model of PT in water

Figure: In table below: computational time for single-point energy calculations for various clusters sizes.

	Total wall time (h) on 512 CPU		
# of water molecules	VMC	LRDMC	
1	0.05	0.15	
2	0.24	2.13	
6	6.18	49.58	