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Outline

How to define electron-nucleus correlation?
By analogy with electronic correlation energy

How to calculate electron-nucleus correlation?

The electron-nucleus mean field configuration interaction (EN-MFCI)
method.

How to understand some case example results?
How about a Quantum Chemastry without Born-Oppenheimer?



1. How to define EN-correlation?

Independence (< no correlation) in probability theory

* p(A and B) =p(A)-p(B)

Born probabilistic interpretation of the wave function

o [1(r)|? =p(r) : probability of being observed at point 7.

Distinguishable particles: Hartree product (¢y = 11 ® »)
o Yu(ri,m2) = Pi(r)va(re) = [Yu(r, )P = [ (r)? [Pa(r2)?

Fermionic particles: Slater determinant (g = ¥ A 1)y)

o Pg(r1,Ts) = ¢1(r1)w2(r2$b1(rz)wz(r1) = [hs(r1,m2) 2 # [101(r1) 2 [the(12) 2

~ some correlation but just spin statistic correlation



Electronic correlation energy in quantum chemistry

Ecorrel Mm <¢S|H|¢S> <¢FullCI|H|wFullCI>

<~

E¢  =(ur|H|[Yar) -(Yruwc HFwcr)

~ Electron-nucleus correlation energy
¢H(ﬁn7 ﬁe) = ¢n(ﬁn)¢e(ée)
Ecorrel _%Zl <¢H|H|¢H> <wFullC’I|H|¢FullC’I>

<~

EEN = (vgn_scrcilH[YEN-screr) ~-(Yruict|H|Ypuict)

~ Born-Oppenheimer ansatz has built-in EN-correlation

vBo(R", B°) = n(R")ye(R", R°) with [e(R", RO # [¥r (RM)[? [2(Re) P



2. How to calculate EN-correlation?

Notation
o Re:= (77, ...,7,°) : electronic position variables
o Rm:= (7", 7", ...,7\") : nuclear position variables

Q := (Ql, Qs,...,Q,) : mass-weighted normal coordinates.
AR" = B" — R : Cartesian displacements

G: (3N x 3N) diagonal matrix of the square roots of nuclear masses
L: (¢ x 3N) orthogonal matrix such that Q = LGAR»

o G-1: (3x3N) submatrix of G-! corresponding to nucleus a

with these notation 7, = = 1LTQ + 7.0 when rotation = translation = 0

A p

o H(Re)= 7= Y As+ Y == electronic Hamiltonian
He i-1 z 1<Z<J<[) ”fL rj H
A q
H(Q)=-1Y Ao + ZoZy : nuclear Hamiltonia
® (Q) 7 z; Q; 1<a§)<N Hr —Tbo-i-G 1LTQ G ILTQ” nu I 1M1 niarn
A N N p N
o H(RQ)=-% %o electron-nucleus coupling

|7 =7, 0= G LT Q|



Electron-Nucleus MFCI: principle

1 o Start from an effective electronic Hamiltonian
HeT(Re) = H(Re) + (¢S (Q)H (Q) + H(Re, Q)oS (D))

* ¢3(Q) =6(Qy) ~ clamped nuclei approximation
* gbéo)(é) = GS of a Kratzer potential D (%&)2 = vibrationally averaged f{eff(ée)

~  Obtain a basis set of electronic approximate eigenstates wi(ﬁe) (not w,-(}%e, Q) like in BO)

2 o Keep electrons and nuclei uncontracted?

YES ~ set ¢é1)(é€) = o(R¢) and solve an effective vibrational Hamiltonian
A1(Q) = H(Q) + (00" (RO)H(Re) + H (A, Q)65 (F))

and loop back to 1

Remark: ((bél)(éeﬂﬁ (Re, @)|¢él)(ée)) ;. known analytically, but integrals calculated directly.



Electron-Nucleus SCFCI: convergence

Setting Hcooulomp = ﬁ(@) + I:I(Pn?) + f:f(ﬁp, @),

n) (n n) (n n ref £ (n
(qﬁé )4 +1)|HC’oulomb|¢é 65Dy = (o L o)

n)

If Felt! 1) = E1) is solved variationally and if the variational space includes gb((]nfl) then

n41)| fre f £ (n+l n=1) fref ™| ((n-1
(6D Aet gDy o < (D fref 7 gy

hence

e < <¢én)¢(()n+1)|HCoulomb|¢én)¢((]n+l)> < <¢(()n71)¢((ﬁ)n)|HC’0ulomb|¢(()n71)¢((*)n)> <o

and:

iteration nb HF Full CI
0 -1.11 00467 -1.15 08083
; H}g Sgig ng %8; Variational space: V = VFvibllCI ® VE%C}
Z :}ﬁgg ggg :}%gg 3% ~ best wave function of the form:
¢ ooty 11347349 Vi =tn ® U
7

-1.1140 300 -1.15473 74

H, total energy in hartree Egn-screr = (Yen-screi|H|YEn-screr)

[cc-pVBZ + 16 (2s) ] ® [16 Kratzer ] basis.



Electron-Nucleus CI

2 o Keep electrons and nuclei uncontracted?

NO ~ Electron-Nuclei CI in direct product basis set :

{%(Q)%(Re)}(n)

[n particular, ~ Electron-Nuclei Full CI

~7 EEN—FuZlCI - <¢F’ILZZCI|H|¢FU”CI>



Electron-Nucleus MFCI: basis set pb

~ Core atomic orbitals unsuited to describe vibrationally
averaged molecular electronic clouds:

H1 H2
QO
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Electron-Nucleus MFCI: basis set pb
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Electron-Nucleus Full CI results

H,
Transition | TF-NOMO/CIS TF-NOMO/FCI Exp.
v: 0—>1 4655 4182 4161
v:0—2 9406 N/A 8087
Yo 01 106556 N/A 91700
D,
Transition | TF-NOMO/CIS TF-NOMO/FCI Exp.
v: (0—->1 3549 3006 2994
v:(0—>2 7026 N/A 5869
Yy 01 107628 N/A 91697
Ty
Transition | TF-NOMO/CIS TF-NOMO/FCI Exp.
v:0—>1 2929 2477 2465
vi 02 5843 N/A 4849
Yy 0-1 108043 N/A 91696

Vibrational and electronic transition wave numbers (in cm™! )
from H. Nakai Int. J. Quantum Chem. 107, 2849 (2007). Except “This work”:
P. Cassam-Chenai, B. Suo, W. Liu, Phys. Rev. A92 012502 (2015).



3. How to understand some case exam-
ple results?

Convergence of ground state energy with MFCI iterations

Hs Do Ty
iteration number HF Full CI HF Full CI HF Full CI
0 -1.1100467 -1.1508083 -1.1167995 -1.1575238 -1.1198084 -1.1605164
1 -1.1138025 -1.1546101 -1.1195670 -1.1603205 -1.1221191 -1.1628484
2 -1.1139342 -1.1547108 -1.1196533 -1.1603841 -1.1221867 -1.1628971
3 -1.1139687 -1.1547212 -1.1196775 -1.1603892 -1.1222067 -1.1629007
4 -1.1139925  -1.1547273 -1.1196943 -1.1603926 -1.1222208 -1.1629030
5 -1.1140094 -1.1547317 -1.1197066 -1.1603949 -1.1222308 -1.1629043
6 -1.1140215 -1.1547349 -1.1197148 -1.1603967 -1.1222379 -1.1629055
7 -1.1140300 -1.1547374 -1.1197209 -1.1603978 -1.1222430 -1.1629067
8 -1.1140360 -1.1547391 -1.1197252 -1.1603988 -1.1222467 -1.1629073
9 -1.1140404  -1.1547403 -1.1197283 -1.1603993 -1.1222493 -1.1629076
(GAY -1.1140507 -1.1547436  -1.1197358 -1.1604013 -1.1222556 -1.1629091
EN-FullCI -1.1638438 -1.1669493 -1.1683018

el _7(0) 1(0) MF _ 1(0) (cv) EN _p(CV) EN
Ecorrel _blllf _EFuZZCI Escf - EFuIlCI _EFullC'I Ecorrel _EFullCI _EFullC[



Correlation energies for hydrogen isotopologues

el _ (0) (0) MF _ 1(0) EN _ EN
Eeorra=ErnrEruct Escf = EpacrPEN-scror Eeorret = PEN-sCFCI-Epyicr

Correlation energies (hartrees)

H, Do Ty

IEEI

correl

0407616  .0407243  .0407080

EM[ 0039353 .0028775 .0023927

EEN 0091002  .0065480 .0053927

correl

How about a Quantum Chemistry without Born-Oppenheimer?
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The Ware Mechanics of an Atow with « Non-Coulomb Central
Field. Part I, Theory and Methods. By D. R. Hantree, PhD,
St John's College.

[Received 19 November, read 21 November, 1927.]
§ 1. Introduction.

On the th of atomic structure proposed by Bohr, in which
the electromcrz?eonaidored as point charges revolving in orbits
about the nuclens, the orbits being speei by quantum con-
ditions, it is well known that both a qualitative and an approximate
quantitative explanation of many features of the aimﬂer optical
speetrn and of X-ray spectra of atoms with many clectrons (e.g.

vidberg sequences in optical spectra, term magnitudes in both
X-ray and optical speetra) ean be given, if the asswnption is made
that the effects of the electrons on one another can be represented
by supposing each to move in a central non-Coulomb field of foree®;
farther, the additional concept of a spinning eleetron provides
similar explanation of other features of these speetrat (eg.
doublet structure of terms and magnitude of doublet ngﬁmtmn,
anomalous Zeemnan effect). This nssnmption of a central field was
admittedly a rough approximation made in the absence of any
detailed idens wbout the interaetion between the different electrons
in an atom, but in view of its snecess as a first approximation for the
orbital atom wodel, the question arises whether the same simple
approximations may not give useful vesults when applied to the
pew formulation of the quantum theory which has been developed
in the last two years.

The wave mechanies of Schridinger) appears to be the most
saitable form of the new quantum theory to nse for this pur 1
and will be adopted throughout.  Further, if 4 is a solution of the
wave equation (suitably normalised), the suggestion has been made
be Schridinger, and developed by Klein giv
wolume density of charge in the state desen y this o
mhether this interpretation is always applieable may be doubtiul,
bat for the wave functions corresponding to elosed orbits of elec-

. tmens 10 an atom, with which alone this paper will be concerned,
it bas the advantage that it gives something of o model both of
the stationary states (if ¥ only containg one of the chameteristic
fiometivns) and of the process’ of mulintion (if ¥ is the sum of

* S, for example, M. Do, erleswngen diber tommechanik (or the English
Emmalatica. The Mechanics of the Afow), Che i,

4 For a geueral review, see I, H. Fowler, Nature, Vol. exix, p. 90 (1927) ; for
& e dedailod treatment, F. Hund, Liwienspekiren, Ch. nr.

2 ML Schrilinger, dnn. der Pls,, Vol, nxxix, pp. 361, 480; Yol. nxxx, p. 437;

amaae, po Lod (198605 Fhys. Ber., Vol xxemn, po 04D {1926).
§ F.Klen, Leit. £ Phys., Vol, o, p, 432 (1927),
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Selected rotational energy levels (in cm™ ) of H,

this work Pachucki et al. 2009 Matyus et al. 2012

v=0

J=1l 118.4 118.4851 118.485355
J=Z 354.1 354.3684 354.369007
J=3 705.1 705.5097 705.509982
J=4 1168.1 1168.7825 1168.782740
J=5 1739.1 1740.1675 N/A
J=14 | 10797.7 10800.9043 N/A
v=1

J=1l 112.5 112.5730 N/A
J=2 336.5 336.6682 N/A
J=3 669.9 670.2172 N/A
J=4 1109.7 1110.2000 N/A
J=5 1652.2 1652.7361 N/A
J=14 | 10257.8 10237.9613 N/A
v=2

J=1 107.0 106.7905 N/A
J=2 319.9 319.3545 N/A
J=3 637.0 635.6922 N/A
J=4 1055.6 1052.8833 N/A
J=5 1572.0 1567.1775 N/A
J=14 9795.1 9684.4911 N/A
v=>5

J=1 88.3 89.7800 N/A
Jel 264.5 268.4120 N/A
J=3 527.8 534.0707 N/A
J=4 876.7 884.0925 N/A
J=5 1309.0 1168.7825 N/A
J=14 8218.6 8029.4047 N/A




Comparison of full and limited electron-nucleus CI calcula-
tions

Full CI Limited CI

Number of CSF’s | 144720 6286
EY (hartrees) | —1.1638438 —1.1638413

v: 0—>1(cm™) | 4165.36 4165.86

The configuration state functions (CSF’s) selected for the limited CI were those having a coefficient

in the full CI expansion of the ground or first excited states with absolute value larger than 107°.
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