On the topology of the reduced density gradient

Roberto A. Boto, Julia Contreras García, Julien Tierny and Jean-Philip Piquemal

ICS-UPMC, Paris, France LCT, UMR 7616, UPMC Univ

July 10, 2015

Roberto A. Boto (ICS-LCT)

2 Local Quantum Theory

3 The topology of the reduced density gradient $(s(\mathbf{r}))$

Introduction

- Quantum Chemical Topology focuses on any meaningful chemical or physical scalar field.
- Each scalar field leads to a different partition of real spaced into regions
- The physical meaning of depends on the seleced scalar field

$$\rho \Rightarrow Atoms$$

- $abla^2 \rho \Rightarrow \quad \text{Atomic Shells, Lone Pairs}$
- $\mathsf{ELF} \Rightarrow$ Atomic Shells, Electron Pairs

Introduction

- ${\mbox{\circle*{ \ or }}}$ The reduced density gradient $s({\mbox{r}})$ has played a paramount role in the DFT development
- Closely connected to energetics
- It is able to reveal atomic structure
- $s(\mathbf{r})$ isosurfaces may reveal covalent and non-covalent interactions
- In this work we analyse some of the topological properties of $s({f r})$

The reduced density gradient $\mathbf{s}(\mathbf{r})$

• The origin of $s(\mathbf{r})$ may be traced to the generalized gradient approximations (GGA) contributions to the exchange energy

$$E_x^{GGA}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \epsilon_{\mathbf{x}}^{\mathbf{unif}} F_x(\mathbf{s}(\mathbf{r})) d\mathbf{r}$$

$$\epsilon_{\bf x}^{\rm unif} = -\frac{3{\bf p}_{\rm F}({\bf r})}{4\pi} \quad {\bf p}_{\rm F}({\bf r}) = (3\pi^2\rho({\bf r}))^{1/3}$$

$$\mathbf{s}(\mathbf{r}) = \frac{|\nabla \rho(\mathbf{r})|}{2\rho(\mathbf{r})\mathbf{p}_{\mathbf{F}}(\mathbf{r})}$$

 $\bullet~\mathbf{s}(\mathbf{r})$ accounts for local density inhomogeneity of the density

Local Quantum Theory

• Local Quantum Theory states that any physical observable represented by the operator \hat{A} may be decomposed in two local contributions

$$\hat{A} = \bar{A}(\mathbf{r}) + i\tilde{A}(\mathbf{r})$$

 $\bullet\,$ For a quantum system is the state ψ

$$\bar{A}(\mathbf{r}) = \mathbf{Re}\left(\frac{\hat{A}\psi}{\psi}\right)(\mathbf{r})$$
 Local value
 $\tilde{A}(\mathbf{r}) = \mathbf{Im}\left(\frac{\hat{A}\psi}{\psi}\right)(\mathbf{r})$ Local spread

• They obey the conditions

$$\langle \hat{A} \rangle_{\psi} = \langle \bar{A} \rangle_{\psi} \qquad \langle \tilde{A} \rangle_{\psi} = 0$$

• $\bar{A}(\mathbf{r})$ is the classical estimate of the operator \hat{A} on \mathbb{R}^3 (rather than L^2)

Local kinetic energy theorem

Given a local representation of the kinetic energy operator $\hat{\mathbf{K}}=-\frac{\nabla^2}{2}$ as

$$\mathbf{K}(\mathbf{r}) = \bar{\mathbf{K}}(\mathbf{r}) + i\tilde{\mathbf{K}}(\mathbf{r})$$

where the real part $\bar{\mathbf{K}}(\mathbf{r})$ is given by

$$\bar{\mathbf{K}}(\mathbf{r}) = -\frac{1}{2} \left(\frac{\nabla^2 \rho(r)}{2\rho(r)} - \frac{\nabla \rho(r) \nabla \rho(r)}{4\rho(r)^2} \right)$$

The expectation value of the kinetic energy $\langle \mathbf{K} \rangle$ is only given by its real part

$$\langle \hat{\mathbf{K}} \rangle = \langle \bar{\mathbf{K}}(\mathbf{r}) \rangle \quad \langle \tilde{\mathbf{K}}(\mathbf{r}) \rangle = 0$$

Local kinetic energy theorem

The local kinetic energy theorem states that:

$$\langle \mathbf{K}(\mathbf{r}) \rangle = \frac{1}{8} \int \frac{\nabla \rho(r) \nabla \rho(r)}{\rho(r)} d\mathbf{r} = \langle \tau_{vw}(\mathbf{r}) \rangle$$

where $\tau_{vw}(\mathbf{r})$ is the von Weizsäcker kinetic energy density

$$\frac{1}{2}[s(\mathbf{r})\mathbf{p}_{\mathbf{F}}(\mathbf{r})]^2 = \tau_{\mathbf{vw}}(\mathbf{r})$$

• $s(\mathbf{r})$ is connected to the local value of the kinetic energy

The topology of $s(\mathbf{r})$

$$s(\mathbf{r}) = C \frac{|\nabla \rho(\mathbf{r})|}{\rho(\mathbf{r})^{4/3}}, \qquad C = \frac{1}{(2(3\pi^2)^{1/3})}$$

• $s(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}^+$

- $\lim_{\rho(\mathbf{r})\to 0} s(\mathbf{r}) = \infty$
- Two kinds of critical points
 - Kind 1: $s(\mathbf{r}) = 0$, $\nabla \rho(\mathbf{r}) = 0 \Rightarrow \mathsf{QTAIM}$

• Kind 2 :
$$\nabla s(\mathbf{r}) = 0$$
, $\nabla \rho(\mathbf{r}) \neq 0$

One-electron Potential OEP(\mathbf{r})

 $\bullet~ \mathbf{OEP}(\mathbf{r})$ is defined by

$$\mathbf{OEP}(\mathbf{r}) = -\bar{\mathbf{K}}(\mathbf{r}) = \frac{1}{2} \left(\frac{\nabla^2 \rho(r)}{2\rho(r)} - \frac{\nabla \rho(r) \nabla \rho(r)}{4\rho(r)^2} \right) = \mathbf{U} - \mathbf{E}$$
(1)

 $\bullet~ \mathbf{OEP}(\mathbf{r})$ splits the spaces into classically allowed and forbidden regions

- $\bullet~ {\bf OEP}({\bf r}) < 0$ Classically allowed regions: atomic shells and core, valence
- $\mathbf{OEP}(\mathbf{r}) > 0$ Classically forbidden regions: barriers between shells

One-electron Potential OEP(r): O (³P)

Connection between OEP(r) and s(r)

• Let's define
$$s'(\mathbf{r}) = \frac{\nabla \rho(\mathbf{r})}{2\rho(\mathbf{r})\mathbf{p_F}(\mathbf{r})}$$
, $s(\mathbf{r}) = |s'(\mathbf{r})|$

• $s'(\mathbf{r})$ is connected to $\mathbf{OEP}(\mathbf{r})$ through its gradient

$$\nabla s'(\mathbf{r}) = \frac{1}{\mathbf{p}_{\mathbf{F}}(\mathbf{r})} \left[2\mathbf{OEP}(\mathbf{r}) - \frac{5}{6}\tau_{\mathbf{vw}}(\mathbf{r}) \right]$$

 \bullet Critical points of $s'({\bf r})$ are related to barriers between classically allowed-forbidden regions

Example: $O(^{3}P)$

Critical Points of $s(\mathbf{r})$

- Kind 1: $s(\mathbf{r}) = 0$, $\nabla \rho(\mathbf{r}) = 0$
 - They are always minima of $s(\mathbf{r})$
 - They recover the Quantum Theory of Atoms in Molecules (QTAIM)
- Kind 2 : $\nabla s'(\mathbf{r}) = 0$
 - They may be either maxima, minima or saddle points
 - Related with classically allowed-forbidden regions
 - It $s(\mathbf{r})$ differentiates between Core-Valence regions

Revealing atomic structure from $s(\mathbf{r})$: O (³P)

Roberto A. Boto (ICS-LCT)

Revealing atomic structure from $s(\mathbf{r})$: O (³P)

Roberto A. Boto (ICS-LCT)

Revealing atomic structure from $s(\mathbf{r})$

Atom	$N_{\rm Core}$	$N_{\rm CV}$	$N_{\rm Valence}$
4Be	1.91	0.27	1.82
⁸ 0	1.90	0.67	5.43
^{10}Ne	1.89	0.80	7.31
^{12}Mg	9.80	0.58	1.62
^{18}Ar	9.48	1.47	7.05

$s(\mathbf{r})$ as functional of $\rho(\mathbf{r})$

• Let's consider $s(\mathbf{r})$ as a functional of $\rho(\mathbf{r})$: $s(\mathbf{r}) \rightarrow s[\rho]$

$s(\mathbf{r})$ as functional of $\rho(\mathbf{r})$

• For a single STO density model, $s(\mathbf{r})$ reduces to:

 $s(\mathbf{r}) \propto \rho^{-1/3}$

- Overlap between orbitals is revealed as a trough in $s[\rho]$ diagram
- Troughs in $s[\rho]$ diagrams matches with Core-Valence regions

The topology of the reduced density gradient ($s(\mathbf{r})$)

$s(\mathbf{r})$ as functional of $\rho(\mathbf{r})$: O (³P)

$s(\mathbf{r})$ as functional of $\rho(\mathbf{r})$

- $s[\rho]$ diagrams may identified bonding situations
- $\bullet \ O_2 \ \text{case}$

• Mapping back $s[\rho]$ to real space, interactions may be visualized

- $\bullet \ s(r)$ isosurfaces reveals covalent and non-covalent interaction simultaneously
- Adenine-Thymine complex

Conclusions

- Classical chemical concepts may be recovered by Quantum Chemical Topology
- $\bullet~s(\mathbf{r})$ applicability ranges from atomic structure to intermolecular interactions
- ${\ensuremath{\, \circ }}\xspace \ s({\ensuremath{\rm r}})$ critical points are closely connected to chemical concepts
- ${\ensuremath{\bullet}}$ Transition regions among shells are identified by $s({\ensuremath{\mathbf{r}}})$

Acknowledge

This work undertaken (partially) in the framework of CALSIMLAB is supported by the public grant ANR-11-LABX-0037-01 overseen by the French National Research Agency(ANR) as part of the "*Investissements d'Avenir*" program (reference: ANR-11-IDEX-0004-02)

