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Correlation energy within the adiabatic connection 
fluctuation and dissipation theorem  

Within this formalism the density functional theory total energy is given 

by 

where the the correlation contribution is expressed as a function of the 

response function   
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The random phase approximation (RPA) 



The random phase approximation (RPA)  

RPA 

Accurate description of  van 

der Waals dispersion forces 



Challenges in the numerical calculation of RPA 
correlation energies    

 To evaluate χ0 it is necessary to compute several 
conduction states ϕc. Convergence is  slow with respect to 
this parameter 

 It is necessary to compute an integral between 0 and +∞  

 It is necessary to store in memory and compute the 
logarithm of the large matrix χ0 

 The convergence is slow with respect to the basis set 
(number of plane-waves) used to represent χ0  

v valence state  

c conduction (virtual) state  

APPLICATIONS TO COMPLEX MATERIALS ARE VERY CHALLENGING   
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Elimination of the empty states in an (optimal) 
basis set representation 
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Lanczos algorithm for response functions 

-D. Rocca, R. Gebauer, Y. Saad and S. Baroni, JCP (2008) 
-P. Umari, G. Stenuit, and S. Baroni, PRB (2010) 
-H. V. Nguyen, T. A. Pham, D. Rocca, and G. Galli, PRB-RC (2012)‏ 

 The algorithm iteratively reduces the very large matrix H to 
the small tridiagonal matrix T 

 The tridiagonal matrix T does not depend on iu: Once T is 
evaluated we can easily compute χij for several values of iu  

 The full diagonalization of H is avoided: Only the necessary 
information is extracted  

  No need to deal with non-Hermitian algorithms 
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Eigenvalues and eigenvectors of χ0 as the optimal 
basis set: Iterative diagonalization  

ONLY FEW EIGENPAIRS ARE 

NECESSARY 

H. F Wilson, F. Gygi, and G. Galli, PRB (2008) 
D. Lu, Y. Li, D. Rocca, G. Galli, PRL (2009) 



Eigenvalues and eigenvectors of χ0 as the optimal 
basis set: Iterative diagonalization  

Iterative diagonalization of χ0  It is not necessary to know explicitly the 

matrix in order to apply it to a vector 

Drawbacks:  

The response function has to be diagonalized for each 
value of the imaginary energy iu  

Every time the response function matrix is applied to a 
vector a non-Hermitian linear system has to be solved  

 D. Lu, Y. Li, D. Rocca, G. Galli, PRL (2009) 

ONLY FEW EIGENPAIRS ARE 

NECESSARY 



Use of a frequency independent optimal basis set 
and the Lanczos algorithm 

First step: Diagonalization of χ0 

in the static case (iu=0)  
Second step: The static eigenvectors of 

χ0 are used as a basis set and the 

dynamical effects are introduced by the 

Lanczos algorithmm 

 The static eigenpotentials of χ0 are a good basis set also at finite 
frequency. This has been demonstrated for GW calculations  

 However, a considerable effort is still necessary to build the basis set 
 
H.-V. Nguyen, T. A. Pham, D. Rocca et G. Galli, PRB-Rap. Comm. (2012) 
T. A. Pham, H.-V. Nguyen, D. Rocca et G. Galli, PRB (2013) 
 
 



Construction of the optimal basis set: A few 
observations  

   

Let us consider the static response function (iu=0) 

The basis set elements needs to accurately represent the products 

Keeping into account the weight 

The products of valence (v) and conduction 

(c) states have a strong linear dependence  

D. Rocca, JCP (2014), to appear in the special issue Advances in DFT Methodology  
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Just an example 



Construction of the optimal basis set: A few 
observations  

   

Let us consider the static response function (iu=0) 

D. Rocca, JCP (2014), to appear in the special issue Advances in DFT Methodology  

Important Contribution!!! Small contribution (because of the weight) 

Only kinetic energy 

Just an example 



Construction of the optimal basis set by the iterative 
diagonalization of a χ0 containing only the kinetic energy term   

D. Rocca, JCP (2014), to appear in the special issue Advances in DFT Methodology  

 The kinetic energy is diagonal in reciprocal space (proportional to G2): It 
is not necessary to solve a linear system to apply χ0 and the implementation 
becomes simple and efficient 

 This procedure is used only to build the optimal basis set 



Details of the Implementation   

  

 Implemented in the QUANTUM 
ESPRESSO package that uses plane-
waves and pseudopotentials 

 The RPA calculations are performed in 
a non-self-consistent way starting 
from LDA or GGA orbitals and energies  
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RPA binding curve of the t-shaped configuration of 
the benzene dimer      

 60 Ry cut-off 

 165000 plane-waves 
for the wavefunctions 

 1.3 millions of PWs 
for the 
charge/potential  

 Curves are shown 
for different sizes of the 
optimal basis set 

 RPA gives the correct 
equilibrium distance 
and 80% of the coupled 
clusters binding energy  

ONLY 1000 BASIS VECTORS ARE SUFFICIENT TO 

CONVERGE THE BINDING CURVE WITHIN 0.05 kcal/mol 



Convergence of the correlation energy difference 
as a function of the basis set size  (d=3.9Å)   

 ΔEc is the difference between the correlation energy of the dimer and 
the correlation energy of the monomer  

 The quantity that actually converges rapidly as a function of the basis 
set size is the ENERGY DIFFERENCE 



Convergence with respect to the number of Lanczos 
steps and the kinetic energy cutoff  (d=3.9Å)  

 By increasing the Lanczos steps from 
30 to 40 the energy shifts by only 0.005 
kcal/mol  

 This means that the 165000x165000 
Hamiltonian H can be approximated by 
a 30x30 tridiagonal matrix T.   

 The kinetic energy cut-off used (60 
Ry) for the wavefunctions might be 
responsible of an error of ≈0.01 
kcal/mol  



RPA binding curve of the sandwich configuration of 
the benzene dimer      

 60 Ry cut-off 

 123000 plane-waves 
for the wavefunctions 

 Almost 1 million of 
PWs for the 
charge/potential  

 Curves are shown for 
different sizes of the 
optimal basis set 

 RPA gives the correct 
equilibrium distance and 
64% of the coupled 
clusters binding energy  

ONLY 1000 BASIS VECTORS ARE SUFFICIENT TO 

CONVERGE THE BINDING CURVE WITHIN 0.05 kcal/mol 



RPA binding curve of the parallel-displaced 
configuration of the benzene dimer (R=3.4Å)      

 60 Ry cut-off 

 143000 plane-waves 
for the wavefunctions 

 1.1 millions of PWs 
for the charge/potential  

 Curves are shown for 
different sizes of the 
optimal basis set 

 RPA gives the correct 
equilibrium distance 
and 68% of the coupled 
clusters binding energy  

ONLY 1000 BASIS VECTORS ARE SUFFICIENT TO CONVERGE THE BINDING CURVE 

WITHIN 0.05 kcal/mol 



Conclusions   
  

 A new efficient method to compute the RPA correlation 
energies has been introduced that improves over the 
shortcomings of previous implementations and avoids 
extrapolation techniques 

 A few examples of the application of this method to non-
trivial systems have been shown 

 Future work will concern the extension of this method to 
treat periodic systems and the implementation of methods 
beyond the RPA 

 

 

  
 

D. Rocca, JCP (2014), to appear in the special issue Advances in DFT 
Methodology  



Eigenvalues and eigenvectors of χ0 as the optimal 
basis set: Iterative diagonalization  

Start from initial  
potentials Ui 

Apply χ0 to Ui 

Orthogonalize 
   {χ0U}i 

Ritz acceleration 

λi converged? 

Output 


