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External potential and electron density

» Consider the electronic Hamiltonian of an N-electron atom or molecule
H(v)=T+ W+ Z,- v(r)
» T and W are system-independent operators
T:—%va% W:Z,‘>J‘r"j_1
> v(r) is a system-dependent multiplicative external potential
» Typically, we are interested in potentials that can bind N electrons
Vn = {v | H(v) has an N-electron ground state }
» if v € V), then an N-electron ground state exists
H(v)V = E(V)V, vEVy
» we shall later also consider potentials that cannot bind N electrons
» The energy may be calculated as an expectation value:
E(v) = (W [H(V)| W) = (W |T + W| W) + (v]p)
> the system interacts with the external potential v through the density p:
(vlp) = /v(r)p(r) dr < interaction or pairing

> the relationship between v and p is at the heart of DFT
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Different potentials have different wave functions

» We denote by W, a normalised ground-state wave function associated with v:
H(v)V, = E(v)V,
» Assume that vi, v» € Vy have a common ground-state wave function W:

H(vi)¥y, = E(v)¥y,

H(v2)Vy = E(v2) Vs, } Yo =Vn =V

» Subtracting the two Schrédinger equations, we obtain
[H(v1) = H)IW = > [v(r) — v ()] V = [E(vi) — E(v)] ¥
» Eliminating W from both sides of the last equation, we find
D a(r) = va(ri)] = E(v1) — E(v2)
» Identical ground-state wave flunctions have potentials that are identical up to a constant:

\le = \UV2 — vl(r) = VZ(I') +c

Different external potentials have different wave functions

vifr) Zw()+c = WV, #V,,
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The Hohenberg—Kohn theorem

» Consider two different potentials v; and v with ground states W; and Wj:
vl(r) #* V2(r) +c = Vi #V, v;eEVy
> are the corresponding densities p; and py also different?

» Invoking the Rayleigh—Ritz variation principle for the two ground states, we obtain

E(v1) < (W2 |H(v1)|W2) = (W2 |H(v2)| W2) + (vi — va| p2) = E(v2) + (vi — v2 | p2)
E(v2) < (W1 |H(v2)| W1) = (W1 |H(v1)| V1) — (vi = va|p1) = E(v1) — (vi — va | p1)

» Adding the two inequalities, we arrive at the strict inequality
E(v1) + E(va) < E(w1) + E(v2) + (i — v2 | p2 — p1)
» This result gives a contradiction unless the two densities are different

The Hohenberg—Kohn (HK) theorem: different potentials have different densities

vi()#w(r)+c = pi(r) # pa(r)

» A key point in the HK proof are the following relations of the ground-state energy
uFv+ceVy = E(u) < E(v)+(u—v]p)
u=v+ceVy = E(u)=E(v)+(u—v]p)
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HK theorem from concavity of ground-state energy

» The ground-state energy is concave in the external potential
E(v) = min(W|H(v)|W)
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» The concavity of E(v) may be understood in the following two-step manner:

@ from A to B, the energy increases linearly since H(v) is linear in v and W is fixed
@ from B to C, the energy decreases as the wave function relaxes to the ground state W;

(W1lH(v1)[W1) < (WolH(v1)|Wo) = (Wo|H(v0)[Wo) + (vi — vo | po)
> Note: the density pg is the slope of the ground-state energy at vp:
E(v1) < E(vo) + (v1 — vo | po)
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HK theorem: strict and non-strict concavity

» The concavity of the energy E(v) follows from two circumstances:

> the linearity of H(v) changes the energy linearly from v, to vy for fixed Wy
> the variation principle lowers the energy from W to W; for fixed vy

» There are two cases to consider: strict concavity (left) and nonstrict concavity (right)

[H(wo),H(v1)] #0 = Wi # Wy = p1 # po strict concavity
[H(w), H(v1)] =0 = W; =WV, = p; =pg non-strict concavity
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E(v1) < E(w) + (v1 — vo | po) E(v1) = E(v) + (v1 — vo | po)
» We have strict concavity and different densities except if vi — vy = c is a scalar

» the Hohenberg—Kohn theorem: the density determines the potential up to a constant
> with vector potentials, non-strict concavity occurs more generally
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HK mapping between potentials and densities

v-representable densities
Each density p is the ground-state density of at most one external potential v, + c.
> those that arise from some potential v, are said to be v-representable

» those that do not are said to be non-v-representable

» HK theory thus sets up a mapping between the following two sets:

v € Vy ={v | H(v) has an N-electron ground state }
p € Ay ={p| p comes from an N-electron ground state }

> the density determines the potential up to a constant
> conversely, the potential determines the density up to a degenerate set
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Hohenberg—Kohn and Lieb variation principles

» In HK theory, the potential and wave function are determined by the density
peEAy — vpot+c — V¥,
> the additive constant ¢ and the phase factor v with v*v = 1 are undetermined

» We now introduce the Hohenberg—Kohn functional:
Frk(p) = (Vo | T + W|W,) = E(vp) — (volp), p € An
> it is independent of ¢ and « and unique also for degenerate systems

» From the Rayleigh—Ritz variation principle, we obtain for arbitrary v € V) the inequality
Frk(p) + (vlp) = (Wp | T + W[ W,) + (vlp) = (W, |[H(v)|V,) > E(v)
which may be written in two equivalent ways:

E(v) < Fux(p) + (vIp);  Fuk(p) = E(v) = (vIp)

» These inequalities may be sharpened into equalities, yielding two variation principles:
Hohenberg—Kohn and Lieb variation principles
E(v) = mln (FHK(p) + (v|p)), v E€Vn, < Hohenberg—Kohn variation principle
pEA

Fuk(p) = vng]?})/(V(E(v) — (v|p)), p € Ay < Lieb variation principle
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Hohenberg—Kohn and Lieb variation principles

F(p) = max, (E(v) — (v]p)

.
4

F(po) = E(vo)-(voloo)

E(v) = minp(F(p) + (v\p))

Po

Vo
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Hohenberg—Kohn theory summarised

The Hohenberg—Kohn functional and the Hohenberg—Kohn variation principle

Frk(p) = (V| T + W[V, p e Ay
E(v) = pg‘L{‘N(FHK(p) +(plv)), veEWN

» We may obtain the ground-state energy by a variation over densities

> there is no need to involve the wave function!

» However, certain difficulties remain

> the explicit form of Fyk is unknown: this does not concern us here
> neither of the sets Ay and Vy are explicitly known

v

shall first see how Ay and Vi may be extended to explicitly known sets

> the Levy-Lieb constrained-search functional

» Next we shall explore Lieb’s variation principle, extending it to these explicitly known sets

Fuk(p) = vmeﬁ‘}fv(E(V) —(vlp)), pe Ay
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Bound and unbound systems

» In HK theory, we have restricted ourselves to electronic eigenstates
H(v)V, = E(v)V,, vEVy
» We now broaden our scope and consider the Rayleigh—Ritz variation principle
E(v) = i(]uf<w|T+ W43 v(n)| W), veudvy
> here U is the set of all potentials such that the energy is finite
> note: this set is explicitly known: U = [3/2 4 [
» Since v € V) is not assumed, there may not be a minimising wave function (an eigenstate)

> we therefore determine an infimum (greatest lower bound) rather than a minimum

» Example: the oxygen atom has an electronic ground state only for N < 9

B T S

» for N > 9, no ground state exists and the excess electrons are not bound
» the infimum is equal to the energy of O™, with the excess electrons at rest infinitely far away
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Levy—Lieb constrained-search theory

» We now perform the Rayleigh—Ritz variation principle for N electrons in two nested steps:

E(v) = i3f<\u|T+ W+ 32, v(r)| w)

ir;fwigfp<\ll [T+ W+ 3 v(n)| V)

=inf [ inf (W[T + W[W) + (p|v)], veUu
p “Wi=p

> an outer minimisation over p and an inner minimisation over ¥V — p

» Introducing the Levy—Lieb constrained-search functional, we obtain
Fi(p) =wi£fp<ww+ WiW)y, peZyc X=L3nLt
E(v) =inf(FL(p) + (plv)), vEU=X"= L3/2 4 1%
where we search over all N-representable densities:
In = {p(r) | p can be obtained from some N-electron wave function W}

» The set of N-representable densities is explicitly known:
I = {p(r) | p(r) > 0, [p(r)dr = N, [|Vp1/2(r)2dr < o0}

» among all ¥ — p, there is always a determinantal wave function Wy — p
> the ‘unknown set’ Ay is dense in the ‘known’ set Zy
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Hohenberg—Kohn and Levy—-Lieb theories compared

Hohenberg—Kohn theory:
Fuk(p) = (Vo | T + W[ W), pE An
E(v) = pmm (Fux(p) + (plv)), veEWN

The Levy—Lieb theory:
Fii(p) = wiﬂfp (VI|T+W|V), pely

E(v) = piensz(FLL(ﬂ) +(plv)), veu

» We have avoided the unknown domain of Hohenberg—Kohn theory

> search is over all “reasonable” densities for all “reasonable” potentials
> however, this theory is still not fully satisfactory

» We obtain the energy by a variational minimisation of Fi| (p) + (p|v)
» the functional to be minimised should then be as simple as possible

v

In particular, we would like it to at most one minimizer (except by degeneracy)
» this cannot be guaranteed for the Levy—Lieb functional

» We now turn our attention to a density functional with a unique solution: Lieb’s functional
> we first gives some background in convex analysis and convex conjugation
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Convex functions: the interpolation characterisation

» A function is said to be convex if it satisfies the inequality

M)+ (1= N)f() > fOxa +(1—A)x), 0<Ai<1

> a linear interpolation always overestimates a convex function

Af(x0) + (1-2) F(x2)

o« o .
X1 AX+(1-2)x%; X2

» For a strictly convex function, we may replace > by > above

» A function f(x) is concave if —f(x) is convex
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Concavity of the ground-state energy

» Concavity of the ground-state energy is simple to prove
> it follows from the Rayleigh—Ritz variation principle and the linearity of H(v)
» Consider the variationally optimised ground-state energy
E(v) = infy (W[H(v)|W)
> a minimising ground state is not assumed

» Insert v = Avi + (1 — A)vz2 with 0 < XA < 1 and use linearity of Hamiltonian
H()\Vl + (1 — )\)Vg) = )\H(Vl) —+ (1 — )\)H(VQ)

v

Insert this Hamiltonian into the Rayleigh—Ritz variation principle:

infy (WIAH(1) + (1 — \)H(w2)| W)

= infy (A(W[H(v1)|V) + (1 = A){V|H(v2)|V))

> Ainfy, (W1|H(v1)[W1) + (1 = N)infy, (V2| H(v2) | V2)
=AE(v1) + (1 = N)E(w2)

E(/\V1 + (]. — )\)Vg)

> separate minimisation of the two terms lowers the energy

» We have now proved concavity:
E()\Vl + (1 — )\)Vg) > )\E(Vl) + (1 — )\)E(Vz)

> a linear interpolation always underestimates the true ground-state energy
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P Consider now the following diatomic potential:

Z, Z
Vmol(r) = ) 5

ra B

Zs + Z Za + Z
(——A B) +(1-2) (——A B) = Aa() + (1= A)va(r)
ra rs
where A = - A— and 1 — A =1 —

A _ _ZB
ZatZg ~ ZatZp°

P Since 0 < X < 1, we obtain from the concavity of the energy

E (Vimol) > XE (va) + (1 — N)E (vg) = AE (va) + (1 — N)E (va) = E (va)
» the energy of the molecule is an upper bound to the energy of the united atom

2

P Conclusion: without nuclear—nuclear repulsion, all molecules would collapse into atoms

_Vnn
I I )
2 3 4 5
71\ Eo(V) + Vi
P Eo)
2 ‘,"“
«O» «Fr «Er» < = o>



Convex functions: (dis)continuity and (non)differentiability

» A convex function is continuous except possibly at the boundary points of its domain

» in many dimensions all points may be boundary points

» A convex function is not necessarily everywhere differentiable

» in fact, it may be nowhere differentiable

» The universal density functional is nowhere continuous and nowhere differentiable . . .
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Convex functions: supporting lines and stationary points

» Consider a function f : R +— R on the real axis
> a supporting line h to f touches the graph of f and is nowhere above it

+00 +00

» A convex function f has a set of supporting lines everywhere in the interior of its domain
> the slope of a supporting line at (x, f(x)) is called a subgradient of f at x

» The condition for a (global) minimum at x is the existence of zero subgradient at x
» note: all local minima of a convex function are global minima
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» A graph of a convex function 7 : R — R has supporting lines for all x

hy(x) = xy — g(y) < line of slope y and intercept —g(y) with the ordinate axis
» Consider the piecewise linear function f(x) plotted below

hi(x)=x+1

T 2

~hy(00=3x-2 T ht0=-202

» At each x, the function f(x) is equal to its largest supporting linear line hy(x)

A function f : R — R is convex if and only if it can be written in the form

f(x) = sup, [xy — g(y)] < pointwise supremum of all supporting lines
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» A function f : R — R is convex if and only if it can be written in the form

f(X) = sup, [Xy — g(y)] <— pointwise supremum of all supporting lines

> The plots below illustrate this construction for x2, x + x*, |x| + x? and exp(x)

> the supporting lines (not the functions) have been plotted at intervals of 0.1
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Convex conjugation

» For a convex function f : R — R, we obtain
f(x) = sup by —e)] = f(x) 2x—gly)
= sz —f(x) = gly)=suply—f(x)]
Convex conjugate functions
For each convex f : R +— R, there is an associated convex function f* = g such that

f(x) =sup, [xy — F*(y)] <= f"(y)=sup,[xy — f(x)]

P> " is called the convex conjugate or Legendre—Fenchel transform of f

v

conjugate pairs: f and f* are each other’s conjugate functions

P each convex function contains all information about its conjugate partner

» Convex conjugation of f on a general vector space X

> we must then require both convexity and lower semi-continuity
> its conjugate function f* is convex and lower semi-continuous on the dual space X*

» Lower semi-continuity is a weak form of continuity

» a continuous functions cannot jump as a limit is reached
> a lower semi-continuous function can jump down but not up as a limit is reached
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DFT by convex conjugation E(v) <> F(p)

» The negative ground-state energy E is convex and continuous
» it therefore has a convex conjugate: Lieb's universal density functional F
E(v) = infpex (F(p) + (vIp)) = F(p)=sup,cx~(E(v) = (v|p))

» these transformations are the Hohenberg—Kohn and Lieb variation principles, respectively
> the vector spaces are X = L3N L and X* = 13/2 41>

Flpl=sup, (EIVI-(vp) Flol
------------------- Flpl

1
1
1
1
1
1 R Pri
1 . . min
L

T
|
1
1
> 1
|
|
|

E[v]

E[v] = inf,(F[p]+(VIp))

s,
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The concave envelope E(v) — F(p) <> co E(v)

» Assume now that E(v) is not concave (not variationally minimised)

> it still generates a convex F(p), conjugate to the concave envelope co E(v) > E(v)

Flpl = sup, E[v]-(vlp) Flpl

TN

. Pmin
T
Vmex N \\ !
% Sag i
’I A 1
NS
’ NN |
i SoSs 1 .
Pl S TSl 1 Pt
E[V]F--------- ><\_____~_-|...‘_---
N,

N,

» The concave envelope co E(v) is the least concave upper bound to E(v)

> excited-state energies are in general not concave
> approximate electronic ground-state energies are in general not concave
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Biconjugation and the convex envelope

» The conjugate function f* is well defined also when f is not convex:
£*(y) = sup (xy — f(x))
X
» We can therefore always form the biconjugate function:

7 (x) = sup (xy = ()

> note: f = f** holds only when f is convex

» We have the following conjugation relationships
f(x) — f*(y) < f(x)

> {** is the largest convex lower bound to f, known as its convex envelope:
f** < f (arbitrary f), f** =f (convex f)
» Lieb's functional is the convex envelope to the Levy-Lieb constrained-search functional
F=F" <Fu.
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Conjugate functions L(x) < H(p)

» If f is strictly convex and differentiable, f* is called a Legendre transform
> Legendre transforms are ubiquitous in physics
» The Lagrangian of classical mechanics is convex in the velocity X
L(X) = 1ms® — Vpor
» Its Legendre transform (convex conjugate) is the Hamiltonian:
H(p) = L*(p) = max (px — 3ms® + Vpor)
> the stationary condition identifies the momentum
p=mx <= Xx=—

m
> substituting X = p/m into H(p), we obtain the Hamiltonian

p?
H(p) = — + V,
(P) om + Vpot
» The reciprocal relation (see next slide) is satisfied:
U(x)=mx=p & H(p)=2 =x
m

» Legendre transforms are also used in thermodynamics
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Reciprocal relations of conjugate functions

» Conjugate functions are related by the conjugate variation principles:
f(x) = sup by =] == £ (y) =suplxy — f(x)]
» From these relations, Fenchel’s inequality follows directly:
f(x)+ f*(y) > xy < valid for all pairs (x, y)
» Assuming that the maxima can be achieved above, we obtain
f(xy) 4+ f*(¥x) = xy¥x < valid for conjugate pairs (x,, yx)

> this may not be possible for all x or all y

v

Differentiation with respect to x, and yyx yields the reciprocal relations:
i) =y = () () =x
> we have here ASSUMED differentiability
» We conclude that the first derivatives of conjugate functions are inverse functions:
(F) = (FY

> this relationship holds in a wider sense in the more general case
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Discontinuity of the universal density functional

» The ground-state energy E is continuous but what about F?

» For a one-electron system, the universal density functional has a simple explicit form:
F(p) = %/'Vplﬂ(r)lz dr < one-electron kinetic energy
» A one-electron Gaussian density of unit exponent has a finite kinetic energy:
—3/2 2
p(r) =77 exp (—r), F(p)=3/4
> Let {pn} be a sequence that approaches p in the norm,
Lim lo = pallp =0,

while developing increasingly rapid oscillations of increasingly small amplitude:

/\ \ A I4A 'T
/?\ JIN SN SN SN

» The kinetic energy F(pp) is driven arbitrarily high in the sequence and F is not continuous:
lim F (pn) = +00 # F (limpy ) = 3/4
n n

» The universal density functional is everywhere discontinuous and hence nondifferentiable
» P. E. Lammert, Int. J. Quantum Chem. 107, 1943 (2007)
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Nondifferentiability of the universal density functional

» Concavity of E and convexity of F imply great simplicity
» the Hohenberg—Kohn and Lieb variation principles have only global extrema

E(v) = infoex (F(p) + (vIp))
F(p) = supyex~ (E(v) — (vlp))
> advanced methods of convex optimisation theory can be used

» We would like to set up optimality conditions for a given potential v
> typically, the Euler—Lagrange equation is set up

oF
3 Ep)) = —v(r) — p Euler-Lagrange equation with chemical potential
o(r

» However, convex functions are not necessarily differentiable
» in particular, F is discontinuous and therefore not differentiable
» the solutions therefore cannot be characterised by derivatives

» Two approaches are possible, taking advantage of the convexity of F

> express optimality conditions in terms of subgradients
> generate a differentiable density functional by Moreau—Yosida regularisation

GdR CORREL Meeting 2015
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Differentiability and subdifferentiability

» Convex functions are not necessarily differentiable
> minima are not characterised by derivatives but instead by subgradients

» The subgradients yp of f at xp are the slopes of the supporting lines to f at xp:

f(x) > f(x0) + yo(x — x0), Vx

+oo oo

20

» The set off all subgradients of f at xg is the subdifferential Of(xp) of f at xg
0f(0) = —[1,1], 9£(0) ={0}, 9f(0) = {0}
» A minimum occurs xp if and only if the subdifferential contains zero
0 € 0f(xo) (horizontal supporting line)

» Differentiability follows when 9f is a singleton and f is continuous
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Hohenberg—Kohn optimality conditions

» The Hohenberg—Kohn variation principle is a convex minimisation problem:

E(v) = infpex (F(p) + (vIp))
> the (global) minimum is attained when the subdifferential of right-hand side contains zero:
E(v) = F(p) + (vlp) <= 0€ 8,(F(p) + (vIp)
> evaluation of the subdifferential:
9(F(p) + (vIp)) = 8,F(p) + 9p(vlp) = OF (p) + {v}
» subgradient optimality conditions for the global minimum:
0€ 0F(p)+{v} < —ve€dF(p)

Hohenberg—Kohn optimality conditions

E(v) = F(p) + (vlp) <= —v € OF(p)

» OF(p) contains all potentials associated with density p: it may be empty or nonempty

> if 9F(p) = 0, then p is not a ground-state density
> if OF(p) # 0, then p is ground-state density and the subdifferential is unique up to scalar:

OF(p) ={—v—p|p €R} <+ Hohenberg—Kohn theorem

> Important result: F(p) # (0 on a dense subset of X
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» The Lieb variation principle is a concave maximisation problem:

F(p) = SLVIP(E(V) — (v]p))

» Exactly the same considerations yield the conditions for optimality

F(p) = E(v) — (vlp) < p € 9E(v)

» OE(v) contains precisely all ensemble ground-state densities associated with v
6E(V) = CO{pl,p2,

.o.pn}
> if 9E(v) = {p} (nondegenerate state), then it is equal to the derivative
> if OE(v) = 0, then v does not support a ground state
> important result: OE(v) # () on a dense subset of X*

» Comparison of the HK and Lieb optimality conditions yields:

E(v) = F(p) — (vlp) <= —v €IF(p) <= p € IE(v)
= = nae
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DFT by convex conjugation summarised

» The ground-state energy may be represented in two alternative forms:
F(p) = sup, e x* {E(V) — (v‘p)} <— energy as a function of density
E(V) = inprX {F(p) + (v\p)} <— energy as a function of potential

> here X = L3N L' and X* = L3/ 4 1>
> analogous to the energy represented in terms of velocity L(x) and momentum H(p)

» The potential v and the density p are conjugate variables

> they belong to dual vector spaces such that (v|p) = [v(r)p(r) dr is finite
> they satisfy the reciprocal relations (assuming well-defined derivatives)

p € OE(v) < determines v when calculating F(p) from E(v)
—v € OF(p) < determines p when calculating E(v) from F(p)

> since the functionals are either convex or concave, their solutions (if they exist) are unique

» The Hohenberg—Kohn theorem:

—v — | w €R) (v-representable density)
OF () = {{ )

1] (non v-representable density)

» Convex conjugation highlights the duality of p and v

> sometimes it is best to work with F(p), other times with E(v)
> DFT parameterises F(p), molecular mechanics parameterises E(v)
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Comparison of density functionals

We have introduced three universal density functionals
Frk(p) = (Wp| T + WIV,) pE Ay
Fu(p) =infu, (V[T + W[W), p€Zy
F(p) = sup,ex{E(v) = (vlp)}, peX=L>nL!

v

These functionals give the same results for ground-state densities:
F(p) = FLL(p) = Fuk(p), p € An
Only the Levy—Lieb and Lieb functionals are defined for other densities

F(p) = F"(p) < FL(p), p€Zn

v

» The Lieb functional is the constrained-search functional for ensembles

F(p) =infro,tr (T 4+ W)

» The Levy—-Lieb constrained search functional does not obey the reciprocal relations:
E(v) = F(p) — (vlp) <= —v E€OF(p) <= p€IE(v)
E(v) = FLi(p) — (vlp) == —v € IFL(p) = p € IJE(v)
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Grand-canonical density—functional theory

» We have studied DFT for a fixed (integral) particle number

> it may be generalised to arbitrary (variable) particle numbers
> system described by a grand-canonical ensemble density matrix

¥ = ZIN pin [Vin) (Winl,  piv 20, ZW pin =1

» The energy E(v, N) is concave in v and convex in N
> it may be transformed in a similar manner, yielding
E(v, N) = supinf (F(p) + (v — ulp) + uN)
I3
> the p conjugate to N is the chemical potential
> the universal density function F is convex and defined for all particle numbers

» The optimality conditions are then

—v—p€dF(p), N= /p(r)dr
» The Hohenberg—Kohn theorem now becomes

{—v—u| — Iy <p< —Iyg1}, (integral N, v-representable p)
OF (p) =< {—v}, (nonintegral N, v-representable p
0, (non-v-representable p)
» Iy = E(v,N —1) — E(v, N) is the ionisation potential

v is uniquely determined by p at nonintegral N
> v is determined to within a scalar in the interval [— Iy, —Iy41] at integral N

v
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Conclusions

» Convex analysis is the natural mathematical framework for DFT

> convex conjugation
> subgradient and subdifferentials

» Density-functional theory follows from concavity and continuity of the ground-state energy

> Lieb's functional is the conjugate to the ground-state energy

> it is convex but neither differentiable nor continuous

> optimality conditions are best given in terms of subdifferentials

> subdifferentials give the mapping from density to potentials and vice versa
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