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Introduction

1 Hohenberg–Kohn theory

I the Hohenberg–Kohn theorem and concavity
I the Hohenberg–Kohn and Lieb variation principles
I v -representable densities and ground-state potentials

2 Levy–Lieb constrained-search theory

I N-representable densities
I the Levy–Lieb constrained-search functional

3 Lieb convex-conjugate theory

I convex functions and convex conjugation
I the Lieb convex-conjugate functional
I Hohenberg–Kohn and Lieb variation principles

4 Discontinuity and nondifferentiability of the universal functional

I subgradients and subdifferentials
I Hohenberg–Kohn and Lieb optimality conditions

I Literature:

I E. H. Lieb, “Density Functional for Coulomb Systems”, Int. J. Quantum Chem. 24, 243 (1983)
I H. Eschrig, “The Fundamentals of DFT” 2nd ed. (Eagle 2003)
I T. Helgaker, P. Jørgensen, and J. Olsen, “Principles of density-functional theory”, Wiley (2016)
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External potential and electron density
I Consider the electronic Hamiltonian of an N-electron atom or molecule

H(v) = T + W +
∑

i
v(ri )

I T and W are system-independent operators

T = − 1
2

∑
i
∇2

i W =
∑

i>j
r−1
ij

I v(r) is a system-dependent multiplicative external potential

I Typically, we are interested in potentials that can bind N electrons

VN = { v | H(v) has an N-electron ground state }

I if v ∈ VN , then an N-electron ground state exists

H(v)Ψ = E(v)Ψ, v ∈ VN
I we shall later also consider potentials that cannot bind N electrons

I The energy may be calculated as an expectation value:

E(v) = 〈Ψ |H(v)|Ψ〉 = 〈Ψ |T + W |Ψ〉+ (v |ρ)

I the system interacts with the external potential v through the density ρ:

(v |ρ) =

∫
v(r)ρ(r) dr ← interaction or pairing

I the relationship between v and ρ is at the heart of DFT
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Different potentials have different wave functions
I We denote by Ψv a normalised ground-state wave function associated with v :

H(v)Ψv = E(v)Ψv

I Assume that v1, v2 ∈ VN have a common ground-state wave function Ψ:

H(v1)Ψv1 = E(v1)Ψv1

H(v2)Ψv2 = E(v2)Ψv2

}
Ψv1 = Ψv2 = Ψ

I Subtracting the two Schrödinger equations, we obtain

[H(v1)− H(v2)] Ψ =
∑

i
[v1(ri )− v2(ri )] Ψ = [E(v1)− E(v2)] Ψ

I Eliminating Ψ from both sides of the last equation, we find∑
i

[v1(ri )− v2(ri )] = E(v1)− E(v2)

I Identical ground-state wave functions have potentials that are identical up to a constant:

Ψv1 = Ψv2 =⇒ v1(r) = v2(r) + c

Different external potentials have different wave functions

v1(r) 6= v2(r) + c =⇒ Ψv1 6= Ψv2
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The Hohenberg–Kohn theorem
I Consider two different potentials v1 and v2 with ground states Ψ1 and Ψ2:

v1(r) 6= v2(r) + c =⇒ Ψ1 6= Ψ2, vi ∈ VN
I are the corresponding densities ρ1 and ρ2 also different?

I Invoking the Rayleigh–Ritz variation principle for the two ground states, we obtain

E(v1) < 〈Ψ2 |H(v1)|Ψ2〉 = 〈Ψ2 |H(v2)|Ψ2〉+ (v1 − v2 | ρ2) = E(v2) + (v1 − v2 | ρ2)

E(v2) < 〈Ψ1 |H(v2)|Ψ1〉 = 〈Ψ1 |H(v1)|Ψ1〉 − (v1 − v2 | ρ1) = E(v1)− (v1 − v2 | ρ1)

I Adding the two inequalities, we arrive at the strict inequality

E(v1) + E(v2) < E(v1) + E(v2) + (v1 − v2 | ρ2 − ρ1)

I This result gives a contradiction unless the two densities are different

The Hohenberg–Kohn (HK) theorem: different potentials have different densities

v1(r) 6= v2(r) + c =⇒ ρ1(r) 6= ρ2(r)

I A key point in the HK proof are the following relations of the ground-state energy

u 6= v + c ∈ VN =⇒ E(u) < E(v) + (u − v | ρ)

u = v + c ∈ VN =⇒ E(u) = E(v) + (u − v | ρ)
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HK theorem from concavity of ground-state energy
I The ground-state energy is concave in the external potential

E(v) = min
Ψ
〈Ψ|H(v)|Ψ〉

v

E

A

B

C

〈Ψ0|H(v0)|Ψ0〉

v0<0 v1<0 v=0

〈Ψ0|H(v1)|Ψ0〉

〈Ψ1|H(v1)|Ψ1〉

I The concavity of E(v) may be understood in the following two-step manner:
1 from A to B, the energy increases linearly since H(v) is linear in v and Ψ0 is fixed
2 from B to C, the energy decreases as the wave function relaxes to the ground state Ψ1

〈Ψ1|H(v1)|Ψ1〉 ≤ 〈Ψ0|H(v1)|Ψ0〉 = 〈Ψ0|H(v0)|Ψ0〉+ (v1 − v0 | ρ0)

I Note: the density ρ0 is the slope of the ground-state energy at v0:

E(v1) ≤ E(v0) + (v1 − v0 | ρ0)
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HK theorem: strict and non-strict concavity
I The concavity of the energy E(v) follows from two circumstances:

I the linearity of H(v) changes the energy linearly from v0 to v1 for fixed Ψ0
I the variation principle lowers the energy from Ψ0 to Ψ1 for fixed v1

I There are two cases to consider: strict concavity (left) and nonstrict concavity (right)

[H(v0),H(v1)] 6= 0 ⇒ Ψ1 6= Ψ0 ⇒ ρ1 6= ρ0 strict concavity

[H(v0),H(v1)] = 0 ⇒ Ψ1 = Ψ0 ⇒ ρ1 = ρ0 non-strict concavity

v

E

XY0 ÈH@v0DÈY0\

v0 v1

XY0 ÈH@v1DÈY0\

XY1 ÈH@v1DÈY1\

v

E

XY0 ÈH@v0DÈY0\

XY1 ÈH@v1DÈY1\ = XY0 ÈH@v1DÈY0\

v0 v1

E(v1) < E(v0) + (v1 − v0 | ρ0) E(v1) = E(v0) + (v1 − v0 | ρ0)

I We have strict concavity and different densities except if v1 − v0 = c is a scalar

I the Hohenberg–Kohn theorem: the density determines the potential up to a constant
I with vector potentials, non-strict concavity occurs more generally
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HK mapping between potentials and densities

v -representable densities

Each density ρ is the ground-state density of at most one external potential vρ + c.

I those that arise from some potential vρ are said to be v -representable

I those that do not are said to be non-v -representable

I HK theory thus sets up a mapping between the following two sets:

v ∈ VN = { v | H(v) has an N-electron ground state }
ρ ∈ AN = { ρ | ρ comes from an N-electron ground state }

v1 � c

v2 � c

Ρ1
1, Ρ12

Ρ2
1

I the density determines the potential up to a constant
I conversely, the potential determines the density up to a degenerate set
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Hohenberg–Kohn and Lieb variation principles
I In HK theory, the potential and wave function are determined by the density

ρ ∈ AN → vρ + c → γΨρ

I the additive constant c and the phase factor γ with γ∗γ = 1 are undetermined

I We now introduce the Hohenberg–Kohn functional:

FHK(ρ) = 〈Ψρ |T + W |Ψρ〉 = E(vρ)− (vρ|ρ), ρ ∈ AN

I it is independent of c and γ and unique also for degenerate systems

I From the Rayleigh–Ritz variation principle, we obtain for arbitrary v ∈ VN the inequality

FHK(ρ) + (v |ρ) = 〈Ψρ |T + W |Ψρ〉+ (v |ρ) = 〈Ψρ |H(v)|Ψρ〉 ≥ E(v)

which may be written in two equivalent ways:

E(v) ≤ FHK(ρ) + (v |ρ), FHK(ρ) ≥ E(v)− (v |ρ)

I These inequalities may be sharpened into equalities, yielding two variation principles:

Hohenberg–Kohn and Lieb variation principles

E(v) = min
ρ∈AN

(
FHK(ρ) + (v |ρ)

)
, v ∈ VN , ← Hohenberg–Kohn variation principle

FHK(ρ) = max
v∈VN

(
E(v)− (v |ρ)

)
, ρ ∈ AN ← Lieb variation principle
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Hohenberg–Kohn and Lieb variation principles

F (ρ) = maxv
(
E (v)− (v |ρ)

)
E (v) = minρ

(
F (ρ) + (v |ρ)

)

E(v)

(v|ρ0)

E(v)-(v|ρ0)

F(ρ0) = E(v0)-(v0 |ρ0)

v0

F(ρ)

(v0|ρ)

E(v0)= F(ρ0)+(v0|ρ0)

ρ0

F(ρ)+(v0|ρ)
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Hohenberg–Kohn theory summarised

The Hohenberg–Kohn functional and the Hohenberg–Kohn variation principle

FHK(ρ) = 〈Ψρ|T + W |Ψρ〉 , ρ ∈ AN

E(v) = min
ρ∈AN

(
FHK(ρ) + (ρ|v)

)
, v ∈ VN

I We may obtain the ground-state energy by a variation over densities

I there is no need to involve the wave function!

I However, certain difficulties remain

I the explicit form of FHK is unknown: this does not concern us here
I neither of the sets AN and VN are explicitly known

I shall first see how AN and VN may be extended to explicitly known sets

I the Levy–Lieb constrained-search functional

I Next we shall explore Lieb’s variation principle, extending it to these explicitly known sets

FHK(ρ) = max
v∈VN

(
E(v)− (v |ρ)

)
, ρ ∈ AN
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Bound and unbound systems
I In HK theory, we have restricted ourselves to electronic eigenstates

H(v)Ψv = E(v)Ψv , v ∈ VN
I We now broaden our scope and consider the Rayleigh–Ritz variation principle

E(v) = inf
Ψ

〈
Ψ
∣∣T + W +

∑
i v(ri )

∣∣Ψ
〉
, v ∈ U ⊃ VN

I here U is the set of all potentials such that the energy is finite
I note: this set is explicitly known: U = L3/2 + L∞

I Since v ∈ VN is not assumed, there may not be a minimising wave function (an eigenstate)

I we therefore determine an infimum (greatest lower bound) rather than a minimum

I Example: the oxygen atom has an electronic ground state only for N ≤ 9

2 4 6 8 10 12 14

-60

-40

-20

I for N > 9, no ground state exists and the excess electrons are not bound
I the infimum is equal to the energy of O−, with the excess electrons at rest infinitely far away
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Levy–Lieb constrained-search theory

I We now perform the Rayleigh–Ritz variation principle for N electrons in two nested steps:

E(v) = inf
Ψ

〈
Ψ
∣∣T + W +

∑
i v(ri )

∣∣Ψ
〉

= inf
ρ

inf
Ψ 7→ρ

〈
Ψ
∣∣T + W +

∑
i v(ri )

∣∣Ψ
〉

= inf
ρ

[
inf

Ψ 7→ρ
〈Ψ |T + W |Ψ〉+ (ρ|v)

]
, v ∈ U

I an outer minimisation over ρ and an inner minimisation over Ψ 7→ ρ

I Introducing the Levy–Lieb constrained-search functional, we obtain

FLL(ρ) = inf
Ψ 7→ρ

〈Ψ |T + W |Ψ〉 , ρ ∈ IN ⊂ X = L3 ∩ L1

E(v) = inf
ρ

(
FLL(ρ) + (ρ|v)

)
, v ∈ U = X∗ = L3/2 + L∞

where we search over all N-representable densities:

IN = {ρ(r) | ρ can be obtained from some N-electron wave function Ψ}

I The set of N-representable densities is explicitly known:

IN = {ρ(r) | ρ(r) ≥ 0,
∫
ρ(r) dr = N,

∫
|∇ρ1/2(r)|2 dr <∞}

I among all Ψ 7→ ρ, there is always a determinantal wave function Ψdet 7→ ρ
I the ‘unknown set’ AN is dense in the ‘known’ set IN
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Hohenberg–Kohn and Levy–Lieb theories compared

Hohenberg–Kohn theory:

FHK(ρ) = 〈Ψρ |T + W |Ψρ〉 , ρ ∈ AN

E(v) = min
ρ∈AN

(
FHK(ρ) + (ρ|v)

)
, v ∈ VN

The Levy–Lieb theory:

FLL(ρ) = inf
Ψ 7→ρ

〈Ψ |T + W |Ψ〉 , ρ ∈ IN

E(v) = inf
ρ∈IN

(
FLL(ρ) + (ρ|v)

)
, v ∈ U

I We have avoided the unknown domain of Hohenberg–Kohn theory
I search is over all “reasonable” densities for all “reasonable” potentials
I however, this theory is still not fully satisfactory

I We obtain the energy by a variational minimisation of FLL(ρ) + (ρ|v)
I the functional to be minimised should then be as simple as possible

I In particular, we would like it to at most one minimizer (except by degeneracy)
I this cannot be guaranteed for the Levy–Lieb functional

I We now turn our attention to a density functional with a unique solution: Lieb’s functional
I we first gives some background in convex analysis and convex conjugation
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Convex functions: the interpolation characterisation

I A function is said to be convex if it satisfies the inequality

λf (x1) + (1− λ)f (x2) ≥ f (λx1 + (1− λ)x2), 0 < λ < 1

I a linear interpolation always overestimates a convex function

x1 x2

f Hx1L

f Hx2L

Λ f Hx1L + H1-ΛL f Hx2L

Λx1+H1-ΛLx2

f HΛx1+H1-ΛLx2L

I For a strictly convex function, we may replace ≥ by > above

I A function f (x) is concave if −f (x) is convex
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Concavity of the ground-state energy

I Concavity of the ground-state energy is simple to prove

I it follows from the Rayleigh–Ritz variation principle and the linearity of H(v)

I Consider the variationally optimised ground-state energy

E(v) = infΨ 〈Ψ|H(v)|Ψ〉
I a minimising ground state is not assumed

I Insert v = λv1 + (1− λ)v2 with 0 < λ < 1 and use linearity of Hamiltonian

H(λv1 + (1− λ)v2) = λH(v1) + (1− λ)H(v2)

I Insert this Hamiltonian into the Rayleigh–Ritz variation principle:

E(λv1 + (1− λ)v2) = infΨ 〈Ψ|λH(v1) + (1− λ)H(v2)|Ψ〉
= infΨ

(
λ
〈
Ψ
∣∣H(v1)

∣∣Ψ〉+ (1− λ)
〈
Ψ
∣∣H(v2)

∣∣Ψ〉)
≥ λinfΨ1

〈
Ψ1

∣∣H(v1)
∣∣Ψ1

〉
+ (1− λ)infΨ2

〈
Ψ2

∣∣H(v2)
∣∣Ψ2

〉
= λE(v1) + (1− λ)E(v2)

I separate minimisation of the two terms lowers the energy

I We have now proved concavity:

E(λv1 + (1− λ)v2) ≥ λE(v1) + (1− λ)E(v2)

I a linear interpolation always underestimates the true ground-state energy
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Amusing consequence of concavity: united atom
I Consider now the following diatomic potential:

vmol(r) = −
ZA

rA
−

ZB

rB
= λ

(
−

ZA + ZB

rA

)
+ (1− λ)

(
−

ZA + ZB

rB

)
= λvA(r) + (1− λ)vB (r)

where λ =
ZA

ZA+ZB
and 1− λ = 1− ZA

ZA+ZB
=

ZB
ZA+ZB

.

I Since 0 < λ < 1, we obtain from the concavity of the energy

E (vmol) ≥ λE (vA) + (1− λ)E (vB ) = λE (vA) + (1− λ)E (vA) = E (vA)

I the energy of the molecule is an upper bound to the energy of the united atom

I Conclusion: without nuclear–nuclear repulsion, all molecules would collapse into atoms

1 2 3 4 5

-2

-1

1

2

E0HvL + Vnn

E0HvL

Vnn
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Convex functions: (dis)continuity and (non)differentiability

I A convex function is continuous except possibly at the boundary points of its domain

I in many dimensions all points may be boundary points

I A convex function is not necessarily everywhere differentiable

I in fact, it may be nowhere differentiable

-2 -1 1 2

2

4

6

8

-1.5 -1 -0.5 0.5

2

4

6

8+¥ +¥

1 2

2

4

6

8

-1 1 2

2

4

6

8

I The universal density functional is nowhere continuous and nowhere differentiable . . .
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Convex functions: supporting lines and stationary points
I Consider a function f : R 7→ R on the real axis

I a supporting line h to f touches the graph of f and is nowhere above it

-2 -1 1 2

1

f1

+¥ +¥

-1 1

1

f3

I A convex function f has a set of supporting lines everywhere in the interior of its domain
I the slope of a supporting line at (x , f (x)) is called a subgradient of f at x

I The condition for a (global) minimum at x is the existence of zero subgradient at x
I note: all local minima of a convex function are global minima
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Convex functions constructed from supporting lines I
I A graph of a convex function f : R 7→ R has supporting lines for all x

hy (x) = xy − g(y) ← line of slope y and intercept −g(y) with the ordinate axis

I Consider the piecewise linear function f (x) plotted below

1 2

-3

-1

3

4

h-2HxL=-2x+2

h1HxL=x+1

h3HxL=3x-2

fHxLgH1L=-2

gH2L=-1

gH3L=2

I At each x , the function f (x) is equal to its largest supporting linear line hy (x)

Characterisation of convex functions

A function f : R 7→ R is convex if and only if it can be written in the form

f (x) = supy [xy − g(y)] ← pointwise supremum of all supporting lines
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Convex functions constructed from supporting lines II

I A function f : R 7→ R is convex if and only if it can be written in the form

f (x) = supy [xy − g(y)] ← pointwise supremum of all supporting lines

I The plots below illustrate this construction for x2, x + x4, |x |+ x2 and exp(x)

I the supporting lines (not the functions) have been plotted at intervals of 0.1

-2 -1 1 2

1

2

3

4

x2

-2 -1 1 2

1

2

3

4

x+x4

-2 -1 1 2

1

2

3

4

ÈxÈ+x2

-2 -1 1 2

1

2

3

4

expHxL
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Convex conjugation

I For a convex function f : R 7→ R, we obtain

f (x) = sup
y

[xy − g(y)] =⇒ f (x) ≥ xy − g(y)

⇐⇒ g(y) ≥ xy − f (x) ⇐= g(y) = sup
x

[xy − f (x)]

Convex conjugate functions

For each convex f : R 7→ R, there is an associated convex function f ∗ = g such that

f (x) = supy [xy − f ∗(y)] ⇐⇒ f ∗(y) = supx [xy − f (x)]

I f ∗ is called the convex conjugate or Legendre–Fenchel transform of f

I conjugate pairs: f and f ∗ are each other’s conjugate functions

I each convex function contains all information about its conjugate partner

I Convex conjugation of f on a general vector space X

I we must then require both convexity and lower semi-continuity
I its conjugate function f ∗ is convex and lower semi-continuous on the dual space X∗

I Lower semi-continuity is a weak form of continuity

I a continuous functions cannot jump as a limit is reached
I a lower semi-continuous function can jump down but not up as a limit is reached
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DFT by convex conjugation E (v)↔ F (ρ)

I The negative ground-state energy E is convex and continuous

I it therefore has a convex conjugate: Lieb’s universal density functional F

E(v) = infρ∈X
(
F (ρ) + (v |ρ)

)
⇐⇒ F (ρ)= supv∈X∗

(
E(v)− (v |ρ)

)
I these transformations are the Hohenberg–Kohn and Lieb variation principles, respectively
I the vector spaces are X = L3 ∩ L1 and X∗ = L3/2 + L∞

E@vD

HvÈΡL

F@ΡD

vmax

F@ΡD=supvHE@vD-HvÈΡLL
¥

F@ΡD

HvÈΡL

E@vD

Ρmin

E@vD = infΡHF@ΡD+HvÈΡLL

Trygve Helgaker (CTCC, University of Oslo) Fundamentals of Density-Functional Theory GdR CORREL Meeting 2015 23 / 37



The concave envelope E (v)→ F (ρ)↔ coE (v)

I Assume now that E(v) is not concave (not variationally minimised)

I it still generates a convex F (ρ), conjugate to the concave envelope co E(v) ≥ E(v)

E@vD
co E@vD

HvÈΡL

F@ΡD

vmax

F@ΡD = supvE@vD-HvÈΡL F@ΡD

HvÈΡL

E@vD

Ρmin

E@vD = infΡF@ΡD+HvÈΡL

I The concave envelope coE(v) is the least concave upper bound to E(v)

I excited-state energies are in general not concave
I approximate electronic ground-state energies are in general not concave
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Biconjugation and the convex envelope
I The conjugate function f ∗ is well defined also when f is not convex:

f ∗(y) = sup
x

(xy − f (x))

I We can therefore always form the biconjugate function:

f ∗∗(x) = sup
y

(xy − f ∗(y))

I note: f = f ∗∗ holds only when f is convex

I We have the following conjugation relationships

f (x) → f ∗(y) ↔ f ∗∗(x)

!4 !2 2 4

!2

!1

1

2

3

4

!4 !2 2 4

!2

!1

1

2

3

4

I f ∗∗ is the largest convex lower bound to f , known as its convex envelope:

f ∗∗ ≤ f (arbitrary f ), f ∗∗ = f (convex f )

I Lieb’s functional is the convex envelope to the Levy-Lieb constrained-search functional

F = F∗∗LL ≤ FLL
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Conjugate functions L(ẋ)↔ H(p)

I If f is strictly convex and differentiable, f ∗ is called a Legendre transform

I Legendre transforms are ubiquitous in physics

I The Lagrangian of classical mechanics is convex in the velocity ẋ

L(ẋ) = 1
2
mẋ2 − Vpot

I Its Legendre transform (convex conjugate) is the Hamiltonian:

H(p) = L∗(p) = max
ẋ

(
pẋ − 1

2
mẋ2 + Vpot

)
I the stationary condition identifies the momentum

p = mẋ ⇐⇒ ẋ =
p

m
I substituting ẋ = p/m into H(p), we obtain the Hamiltonian

H(p) =
p2

2m
+ Vpot

I The reciprocal relation (see next slide) is satisfied:

L′(ẋ) = mẋ = p & H′(p) =
p

m
= ẋ

I Legendre transforms are also used in thermodynamics
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Reciprocal relations of conjugate functions

I Conjugate functions are related by the conjugate variation principles:

f (x) = sup
y

[xy − f ∗(y)] ⇐⇒ f ∗(y) = sup
x

[xy − f (x)]

I From these relations, Fenchel’s inequality follows directly:

f (x) + f ∗(y) ≥ xy ← valid for all pairs (x, y)

I Assuming that the maxima can be achieved above, we obtain

f (xy ) + f ∗(yx ) = xyyx ← valid for conjugate pairs (xy , yx )

I this may not be possible for all x or all y

I Differentiation with respect to xy and yx yields the reciprocal relations:

f ′(xy ) = yx ⇐⇒ (f ∗)′(yx ) = xy

I we have here ASSUMED differentiability

I We conclude that the first derivatives of conjugate functions are inverse functions:

(f ′)−1 = (f ∗)′

I this relationship holds in a wider sense in the more general case
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Examples of convex conjugate functions

f (x) = 1 + |x |, f ∗(y) =

{
−1, |y | ≤ 0

+∞, |y | > 1

g(x) =
√

1 + x2, g∗(y) =

{
−
√

1− x2, |y | ≤ 0

+∞, |y | > 1

-2 2

-2

2

f

-2 2

-2

2

-2 2

-2

2

f *

-2 2

-2

2

g

-2 2

-2

2

-2 2

-2

2

g*

Trygve Helgaker (CTCC, University of Oslo) Fundamentals of Density-Functional Theory GdR CORREL Meeting 2015 28 / 37



Discontinuity of the universal density functional

I The ground-state energy E is continuous but what about F?

I For a one-electron system, the universal density functional has a simple explicit form:

F (ρ) = 1
2

∫ ∣∣∇ρ1/2(r)
∣∣2 dr ← one-electron kinetic energy

I A one-electron Gaussian density of unit exponent has a finite kinetic energy:

ρ(r) = π−3/2 exp
(
−r2

)
, F (ρ) = 3/4

I Let {ρn} be a sequence that approaches ρ in the norm,

lim
n→+∞

‖ρ− ρn‖p = 0,

while developing increasingly rapid oscillations of increasingly small amplitude:

I The kinetic energy F (ρn) is driven arbitrarily high in the sequence and F is not continuous:

lim
n

F (ρn) = +∞ 6= F
(

lim
n
ρn
)

= 3/4

I The universal density functional is everywhere discontinuous and hence nondifferentiable
I P. E. Lammert, Int. J. Quantum Chem. 107, 1943 (2007)
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Nondifferentiability of the universal density functional

I Concavity of E and convexity of F imply great simplicity
I the Hohenberg–Kohn and Lieb variation principles have only global extrema

E(v) = infρ∈X
(
F (ρ) + (v |ρ)

)
F (ρ) = supv∈X∗

(
E(v)− (v |ρ)

)
I advanced methods of convex optimisation theory can be used

I We would like to set up optimality conditions for a given potential v
I typically, the Euler–Lagrange equation is set up

δF (ρ)

δρ(r)
= −v(r)− µ Euler–Lagrange equation with chemical potential µ

I However, convex functions are not necessarily differentiable
I in particular, F is discontinuous and therefore not differentiable
I the solutions therefore cannot be characterised by derivatives

I Two approaches are possible, taking advantage of the convexity of F
I express optimality conditions in terms of subgradients
I generate a differentiable density functional by Moreau–Yosida regularisation
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Differentiability and subdifferentiability

I Convex functions are not necessarily differentiable

I minima are not characterised by derivatives but instead by subgradients

I The subgradients y0 of f at x0 are the slopes of the supporting lines to f at x0:

f (x) ≥ f (x0) + y0(x − x0), ∀x

-2 -1 1 2

1

2

-2 -1 1 2

1

2
+¥ +¥

-1 1

1

I The set off all subgradients of f at x0 is the subdifferential ∂f (x0) of f at x0

∂f1(0) = −[1, 1], ∂f2(0) = {0}, ∂f3(0) = {0}

I A minimum occurs x0 if and only if the subdifferential contains zero

0 ∈ ∂f (x0) (horizontal supporting line)

I Differentiability follows when ∂f is a singleton and f is continuous
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Hohenberg–Kohn optimality conditions

I The Hohenberg–Kohn variation principle is a convex minimisation problem:

E(v) = infρ∈X
(
F (ρ) + (v |ρ)

)
I the (global) minimum is attained when the subdifferential of right-hand side contains zero:

E(v) = F (ρ) + (v |ρ) ⇐⇒ 0 ∈ ∂ρ(F (ρ) + (v |ρ))

I evaluation of the subdifferential:

∂ρ(F (ρ) + (v |ρ)) = ∂ρF (ρ) + ∂ρ(v |ρ) = ∂F (ρ) + {v}
I subgradient optimality conditions for the global minimum:

0 ∈ ∂F (ρ) + {v} ⇐⇒ −v ∈ ∂F (ρ)

Hohenberg–Kohn optimality conditions

E(v) = F (ρ) + (v |ρ) ⇐⇒ −v ∈ ∂F (ρ)

I ∂F (ρ) contains all potentials associated with density ρ: it may be empty or nonempty

I if ∂F (ρ) = ∅, then ρ is not a ground-state density
I if ∂F (ρ) 6= ∅, then ρ is ground-state density and the subdifferential is unique up to scalar:

∂F (ρ) = {−v − µ | µ ∈ R} ← Hohenberg–Kohn theorem

I Important result: ∂F (ρ) 6= ∅ on a dense subset of X
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Lieb optimality conditions and reciprocal relations

I The Lieb variation principle is a concave maximisation problem:

F (ρ) = sup
v

(
E(v)− (v |ρ)

)
I Exactly the same considerations yield the conditions for optimality

Lieb optimality conditions

F (ρ) = E(v)− (v |ρ) ⇐⇒ ρ ∈ ∂E(v)

I ∂E(v) contains precisely all ensemble ground-state densities associated with v

∂E(v) = co{ρ1, ρ2, . . . ρn}
I if ∂E(v) = {ρ} (nondegenerate state), then it is equal to the derivative
I if ∂E(v) = ∅, then v does not support a ground state
I important result: ∂E(v) 6= ∅ on a dense subset of X∗

I Comparison of the HK and Lieb optimality conditions yields:

Reciprocal relations: −∂F (ρ) and ∂E(v) are inverse multifunctions

E(v) = F (ρ)− (v |ρ) ⇐⇒ −v ∈ ∂F (ρ) ⇐⇒ ρ ∈ ∂E(v)
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DFT by convex conjugation summarised
I The ground-state energy may be represented in two alternative forms:

F (ρ) = supv∈X∗
{
E(v)− (v |ρ)

}
← energy as a function of density

E(v) = infρ∈X
{
F (ρ) + (v |ρ)

}
← energy as a function of potential

I here X = L3 ∩ L1 and X∗ = L3/2 + L∞

I analogous to the energy represented in terms of velocity L(ẋ) and momentum H(p)

I The potential v and the density ρ are conjugate variables

I they belong to dual vector spaces such that (v |ρ) =
∫
v(r)ρ(r) dr is finite

I they satisfy the reciprocal relations (assuming well-defined derivatives)

ρ ∈ ∂E(v)← determines v when calculating F (ρ) from E(v)

−v ∈ ∂F (ρ) ← determines ρ when calculating E(v) from F (ρ)

I since the functionals are either convex or concave, their solutions (if they exist) are unique

I The Hohenberg–Kohn theorem:

∂F (ρ) =

{
{−v − µ | µ ∈ R) (v -representable density)

∅ (non v -representable density)

I Convex conjugation highlights the duality of ρ and v
I sometimes it is best to work with F (ρ), other times with E(v)
I DFT parameterises F (ρ), molecular mechanics parameterises E(v)
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Comparison of density functionals

We have introduced three universal density functionals

FHK(ρ) = 〈Ψρ|T + W |Ψρ〉 , ρ ∈ AN

FLL(ρ) = infΨ→ρ 〈Ψ |T + W |Ψ〉 , ρ ∈ IN
F (ρ) = supv∈X

{
E(v)− (v |ρ)

}
, ρ ∈ X = L3 ∩ L1

I These functionals give the same results for ground-state densities:

F (ρ) = FLL(ρ) = FHK(ρ), ρ ∈ AN

I Only the Levy–Lieb and Lieb functionals are defined for other densities

F (ρ) = F∗∗LL (ρ) ≤ FLL(ρ), ρ ∈ IN

I The Lieb functional is the constrained-search functional for ensembles

F (ρ) = infΓ→ρ tr Γ(T + W )

I The Levy–Lieb constrained search functional does not obey the reciprocal relations:

E(v) = F (ρ)− (v |ρ) ⇐⇒ −v ∈ ∂F (ρ) ⇐⇒ ρ ∈ ∂E(v)

E(v) = FLL(ρ)− (v |ρ) ⇐⇒ −v ∈ ∂FLL(ρ) =⇒ ρ ∈ ∂E(v)
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Grand-canonical density–functional theory

I We have studied DFT for a fixed (integral) particle number
I it may be generalised to arbitrary (variable) particle numbers
I system described by a grand-canonical ensemble density matrix

γ̂ =
∑

iN
piN |ΨiN〉 〈ΨiN | , piN ≥ 0,

∑
iN

piN = 1

I The energy E(v ,N) is concave in v and convex in N
I it may be transformed in a similar manner, yielding

E(v ,N) = sup
µ

inf
ρ

(F (ρ) + (v − µ|ρ) + µN)

I the µ conjugate to N is the chemical potential
I the universal density function F is convex and defined for all particle numbers

I The optimality conditions are then

−v − µ ∈ ∂F (ρ), N =

∫
ρ(r)dr

I The Hohenberg–Kohn theorem now becomes

∂F (ρ) =


{−v − µ | − IN ≤ µ ≤ −IN+1}, (integral N , v -representable ρ)

{−v}, (nonintegral N , v -representable ρ

∅, (non-v -representable ρ)

I IN = E(v ,N − 1)− E(v ,N) is the ionisation potential
I v is uniquely determined by ρ at nonintegral N
I v is determined to within a scalar in the interval [−IN ,−IN+1] at integral N

Trygve Helgaker (CTCC, University of Oslo) Fundamentals of Density-Functional Theory GdR CORREL Meeting 2015 36 / 37



Conclusions

I Convex analysis is the natural mathematical framework for DFT
I convex conjugation
I subgradient and subdifferentials

I Density-functional theory follows from concavity and continuity of the ground-state energy
I Lieb’s functional is the conjugate to the ground-state energy
I it is convex but neither differentiable nor continuous
I optimality conditions are best given in terms of subdifferentials
I subdifferentials give the mapping from density to potentials and vice versa
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