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Some perspective on Quantum Monte Carlo (QMC)

Many problem in Quantum physics at zero temperature

The Schroedinger equation,

HΦ = (−
N

∑

i=1

∆i + V(r1, r2 . . . rN))Φ = EΦ (1)

N number of particles.

ri, 3 spatial coordinates of particle i.

E lowest eigenvalue, the groundstate energy.

Φ(r1 . . . rN) the lowest eigen vector, the groundstate

Φ antisymetric for electrons (fermions).
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Stochastic technics in principle adapted for solving the
Schroedinger equation :

Solving the many problem in Quantum Physics
<=>

Computing integrals in large dimensions.
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Example : variational energy

Variational energy

EV ≡ 〈Ψ|Ĥ|Ψ〉

Average on a probability distribution

〈Ψ|Ĥ|Ψ〉 =

∫

dRΨ2(R)
HΨ

Ψ
(R)

= 〈HΨ
Ψ

(R)〉Ψ2 = 〈e(R)〉Ψ2

R : 3N coordinates of the N interacting particles

Ev =
1
N

N
∑

k=1

e(Rk)
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In general

More generally

EQMC = 〈e(R)〉
π(R)

Depending on the QMC method, the nature of R and π might
be different. e.g. for R :

3N particle coordinates (VMC,DMC..).

Trajectories in the space of 3N particle coordinates
(PDMC, PIMC, reptation Monte Carlo...)
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Precision on energies

E ∝ N (homogenous) system of size N (2)

Statistical uncertainty

δE ∝
√

V(e)
M

∝
√

N
M

sample size M (3)

δE
E

∝ 1√
MN

(4)

Weak limitation in system size N (cpu and memory
∝ N...N3 )

V(e) can be lowered (choice of ψ) : zero-variance principle .
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Quantities of physical interest

Energy differences

Eλ − E0 = 〈eλ〉πλ
− 〈e0〉π0 (5)

“includes energy derivatives”

lim
λ→0

Eλ − E0

λ
(6)

Quantities useful :

Physical or chemical properties.

Observables.

Optimization of the energy.
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Paradigm : Calculation of an observable O

Hλ = H + λO => Ō =
dEλ

dλ
≃ Eλ − E0

λ
=

∆λ

λ
(7)

Energy difference ∆λ small

λ small.

λO often localized (forces...)

=⇒ ∆λ has a locality property :

∆λ(N → ∞) → K finite.

∆λ

E0
∝ λ

N
(8)
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First method : Independent calculation

∆λ in an independent energy calculation

δ∆λ

∆λ

∝ δE0

λ
∝

√
N
λ

No locality property for the statistical uncertainty.

Comparison to the total energy

δ∆λ

∆λ

∝ N
3
2

λ

δE
E
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Basic idea

We have to compute the difference

Eλ − E0 = 〈eλ(R)〉πλ
− 〈e0(R)〉π

Sampling the same distribution for the two energies

Eλ − E0 =
〈eλ

πλ

π0
〉π

〈πλ

π0
〉π0

− 〈e0〉π0 . (9)

weight wλ
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Useful expression

∆λ = Eλ − E0 = 〈eλ − e0〉π0 +
cov(eλ,wλ)

〈wλ〉π0

(10)

λ dependence

Eλ − E0 = λ∂Eλ

dλ
|λ=0 + o(λ).

E′

λ = 〈e′λ[ψ′

λ]〉π0 + cov(eλ,w
′

λ)

Zero-Variance (ZV) estimator Pulay correction

Finite statistical uncertainty on E′

λ =⇒ δ∆λ

∆λ
= K + o(λ)
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N-dependence

R. Assaraf, D. Domin PRE 2014

Model of two separated (non interacting) subsystems

Particles coordinates Rl and Ru. Hλ = Hl
λ + Hu

Variational Monte Carlo

R = (Rl,Ru)

Ψλ(R) = Ψλ(Rl,Ru) = Ψl
λ(Rl)Ψu(Ru)

Local energy eλ(R) = el
λ(Rl) + eu(Ru)

Eλ − E = 〈el
λ − el

0〉 +
cov(eλ,wl)

〈wl〉 (11)
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First term (ZV)

〈el
λ − el

0〉 depends only on Rl

=⇒ Locality property of its variance
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Second term (“Pulay” term)

cov(eλ,wl)

〈wl〉 =
cov(el

λ,w
l)

〈wl〉 +
cov(eu,wl)

〈wl〉 (12)

Local Non local

The non local contribution is 0 (eu and wl independant) !

But the variance on a finite sample (eu(Ru
i ),w

l(Rl
i))i∈[1..M] :

∝ V(eu) ∝ N

.
=⇒ δ∆λ(N) ∝

√
N for large N.

Non locality property for the statistical uncertainty for the
Pulay term.
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Conclusion

δ∆λ

∆λ

∝
√

N (13)

Correlated sampling with reweighting solves the small λ
difficulty but not the large N one
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Numerical illustration

Calculation of the force on a nucleus

Histograms, metallic chain
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FIG.: Histogram of the ZV term and the local energy in the Hn chain

The ZV contribution has the locality property
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FIG.: Statistical uncertainties in the metallic Hn chain

The fluctuations of the weigths (Pulay correction) dominate for
large N
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The method
Assaraf, Caffarel, Kollias 2011

Basic idea

〈eλ(R)〉πλ
− 〈e(R)〉π = 〈eλ(Rλ) − e(R)〉Π(R,Rλ)

Marginal distributions of Π(R,Rλ) must be π(R), πλ(Rλ).

differences of the order of λ, 〈(Rλ) − R)2〉 = Kλ2
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How to build such a process

Choosing close stochastic processes, L0, Lλ having π0 and
πλ as stationary states.

Stability versus chaos. Two trajectories with the different
initial conditions and same pseudo random numbers meet
exponentially fast.

Insures that close processes will produce close
trajectories.
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For example, with the overdamped Langevin process one
would have

R0(t + dt) = R0(t) + b0 [R(t)] dt + dW (14)

Rλ(t + dt) = Rλ(t) + bλ [Rλ(t)] dt + dW (15)
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Stability of the process versus chaos

Chain of 120 Hydrogens (120 electrons).
Same process but different initial conditions.
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Back to the fully separated model

Same dynamic for Rλ and R0 in the region unaffected by the
perturbation (region u) :

Rλ = (Rl
λ,R

u)

The separability of the Hamiltonian and the trial wavefunction is
transfered to the local energy :

eλ(Rλ) = el
λ(Rl

λ) + eu
0(R

l
0)

=⇒ eλ(Rλ) − e0(R0) = el
λ(Rl

λ) − el
0(R

l
0)

independent of Ru =⇒ locality property for the variance
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reweighting
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Locality of the algorithm
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FIG.: Square average of the distance between two electrons
belonging to R0 and R1 as a function of the distance to the first atom
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Seems to solve the small λ and the large N undesirable
behaviors.

Perspective to obtain small energy differences with
comparable accuracy to the energy.

But relies on some particular dynamics (stability with respect to
the chaos).
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FIG.: Unstable situation versus a stable situation

=⇒ Necessity to better understand the chaotic properties of
random processes and to develop stable dynamics (under way

for larger systems).
Collaboration with T. Lelievre, B. Jourdain R. Roux.
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