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Motivation

Spectroscopy: optical absorption of solids
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Figure: Adapted from RMP 74, 601 (2002)

-State of the art: Bethe-Salpeter equation but numerically expensive [O(N®)]

-We would like a density-functional approach giving similar results: [O(N?)]



Standard approaches

Underestimation of continuum excitons and absence of bound excitons

RPA = no xc effects in induced potentials (we use a GW corrected band gap.)
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No excitonic effects



Standard approaches

Absence of Drude tails in spectra of metals
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No relaxation due to scattering effects

Intraband absorption



Current approaches

Many developments since ~ 2000

Recent approaches: bootstrap method [PRL 107, 186401], functional derived
from a meta-GGA [PRL 107, 216402], functional based on jellium-with-gap
model [PRB 87, 205143]; guided iteration [PRL 114, 146402 (2015)].

Shortcomings:

1. not parameter free: an ad hoc material-dependent broadening parameter
is used to compare theory and experiment.

2. static: cannot describe finite width of Drude tails and bound excitons

3. explicit calculation of the KS density response function



Current approaches

Many developments since ~ 2000

Recent approaches: bootstrap method [PRL 107, 186401], functional derived
from a meta-GGA [PRL 107, 216402], functional based on jellium-with-gap
model [PRB 87, 205143]; guided iteration [PRL 114, 146402 (2015)].

Shortcomings:

1. not parameter free: an ad hoc material-dependent broadening parameter
is used to compare theory and experiment.

2. static: cannot describe finite width of Drude tails and bound excitons

3. explicit calculation of the KS density response function

Our approach:
1. parameter free: truly predictive
2. dynamical: memory effects

3. no explicit calculation of response functions



Optical absorption from the current

Knowledge of the current density in the unit cell is sufficient to calculate
absorption spectra [e2 = Im(‘€ u)]

The macroscopic polarization can be obtained from the induced current density

—

Pmac(w) = ;\}/drdj(r w),

(V= volume of unit cell).



Optical absorption from the current

Knowledge of the current density in the unit cell is sufficient to calculate
absorption spectra [e2 = Im(‘€ u)]

The macroscopic polarization can be obtained from the induced current density

—

Pmac(w) w\//drd‘j(l’ w)
(V= volume of unit cell).

It is proportional to the macroscopic electric field:
Pmac(w) = <Y>e(UJ) . Emac(w)y
where the electric susceptibility <Yﬁ(w) is related to € wm:

Emw) =14 47 c(w).



Time-dependent current-density-functional theory

Interacting many-body Non-interacting system in an effective
system in external field field described by {vks(F, E),AKS(F, t)}
described by {v(7, t), A(7, t)} with identical p(7, t) and j(7, t).

O+— O& @] O

X E i% <= j(7t) =

o
O
O

Linear response (F. Kootstra, et al. JCP 112, 6517 (2000), P. Romaniello and P.L. de Boeij,
PRB 71, 155108 (2005)):

5j(7w) = 7é/dF'<Y>JZS(F,?’,w)[EmaC(w) + B (F,w)]
/dr X’KS(F, ,<.u)5v,’,;’,xcc(l_’”,o.;)7

Here we will neglect microscopic contributions to the xc potentials
(Ve = OV B¢ = Eie).

We need an approximation for £ (w)



Polarization functional

We use a polarization functional:

—

Enac(w) = @ (@) - Prac(w)

Relation to TDCDFT kernel:

T (W) = JJV/Vd?/ 47 F (7,7, w)

N

‘@ (w) relates ' o(w) and ' E(w)

[Nl ') = [N (w) — @ (w)

P.L. de Boeij, F. Kootstra, AB, R. van Leeuwen and J.G. Snijders, JCP 115, 1995 (2001)



Bound exciton

Let us assume that all quantities are isotropic.

X&)

)= T e



Bound exciton

Let us assume that all quantities are isotropic.
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Bound exciton: Im[xe(w)] has to be nonzero below the band gap
(Im[x&™(w)] = 0)
Following F. Sottile et al., PRB 68 205112 (2003):

(™ (w))*Im[a(w)]

el = G PO Relalw))? + (E (@) mfa()])?



Bound exciton

Let us assume that all quantities are isotropic.
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Bound exciton: Im[xe(w)] has to be nonzero below the band gap
(Im[x&™(w)] = 0)
Following F. Sottile et al., PRB 68 205112 (2003):

- (P () Im[a(w)]
Im[xe(w)] = (1 — xEPA(w)Re[a(w)])? + (xFPA(w)Im[a(w)])?

A bound exciton is obtained if for some frequency wpe < Wgap:

Refo(wn)] = g Imfa(ws)] < 1

wbe)



Bound exciton

Let us assume that all quantities are isotropic.
O
‘ 1= x&(w)a(w)

Bound exciton: Im[xe(w)] has to be nonzero below the band gap
(Im[x&™(w)] = 0)
Following F. Sottile et al., PRB 68 205112 (2003):

(™ (w))*Im[a(w)]

el = G PO Relalw))? + (E (@) mfa()])?

A bound exciton is obtained if for some frequency wpe < Wgap:

1

X§PA(

Re[a(wpe)] = )

Im[a(wee)] < 1
Unfortunately we do not know wpe

Can we relate it to a quantity we do know? For example foA(w =0)



Lorentz model

Limiting case: low-density insulator (Ne/V = small)
RPA spectrum centered around plasmon frequency wp.

RPA(w)N_& 1 _ 1
8T |w—wp+iy wHwy+iy

Prefactor ensures that the f-sum rule is satisfied.



Lorentz model

Limiting case: low-density insulator (Ne/V = small)
RPA spectrum centered around plasmon frequency wp.

RPA ~ W 1 1
Xe (w)~—8f — — .
T | w—wpt+ 1y wtwpt iy

Prefactor ensures that the f-sum rule is satisfied.

True absorption spectrum is dominated by a sharp bound exciton at w = wpge:

(w)N_wbe 1 _ 1
Xe - W—Wpe + 1M W+ wpe + M

Prefactor ensures that ep(0) = e (0).



Lorentz model
Limiting case: low-density insulator (Ne/V = small)
RPA spectrum centered around plasmon frequency wp.

RPA ~ W 1 1
Xe (w)~—8f — — .
T | w—wpt+ 1y wtwpt iy

Prefactor ensures that the f-sum rule is satisfied.

True absorption spectrum is dominated by a sharp bound exciton at w = wpge:

Xe(w)%_Wbe 1 _ 1
8T |w—Whe +1in W+ whe +in

Prefactor ensures that ep(0) = e (0).

wp corresponds to the frequency at which Re[em(w)] = 0 and Im[em(w)] ~ 0
wp = \/Ewbe
Taylor expansion:

XM woe) = x&7(0) + 4n X7 (0)] = X (0)err ™ (0)



A simple polarization functional

Summary:
1. Ref[a(wpe)] = 1/xE(wpe) with Tm[a(w)] << 1
2. X" (wee) & x&7(0)er ™ (0)

We obtain for «
o=

P = X (w = 0)



A simple polarization functional

Summary:
1. Ref[a(wpe)] = 1/xE(wpe) with Tm[a(w)] << 1
2. X" (wee) & x&7(0)er ™ (0)

We obtain for «

a= .
eRPA(w = 0)xEPA(w = 0)

Shortcoming:

Static — no memory effects — unable to account for the finite width of bound
excitons and Drude tails.



A simple polarization functional

We add <VW , the long-range part of the dynamical Vignale-Kohn
functional (exact for an inhomogeneous electron gas) [G. Vignale and W. Kohn, PRL
77, 2037 (1996)]

Vpo(7) @ Vpo(F) 5 W) — 5 W) — d*exc
+ T8 [fm(p, ) fer(p) - 45 D

va is complementary to the static part.
It accounts for the finite width of Drude tails and bound excitons.



A simple polarization functional

We add <VW , the long-range part of the dynamical Vignale-Kohn
functional (exact for an inhomogeneous electron gas) [G. Vignale and W. Kohn, PRL
77, 2037 (1996)]

Vpo(7) @ Vpo(F) 5 W) — 5 W) — d*exc
+ T8 [fm(p, ) fer(p) - 45 D

va is complementary to the static part.
It accounts for the finite width of Drude tails and bound excitons.

Final result:

@) = LRI + Y k()



No parameters

» Ground state + lattice constant: LDA
> We apply a scissors operator and the energy shift is calculated with GW

» The E—space integrals are done analytically using a tetrahedron scheme



No parameters

» Ground state + lattice constant: LDA
> We apply a scissors operator and the energy shift is calculated with GW

» The E—space integrals are done analytically using a tetrahedron scheme

We do not include effects due to electron-phonon coupling.

The spectra we obtain are predictions of the optical spectra at low temperature
where electron-electron scattering dominates



Results: Silicon and GaP
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Polarization functional describes continuum excitons.



Results: solid argon and LiF
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Polarization functional describes bound excitons.



Results: diamond and copper
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Polarization functional describes Drude tails.
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Conclusions

> We presented the first fully parameter-free density-functional approach
that gives accurate optical spectra for insulators, semiconductors and
metals alike.

» Our approach is therefore truly predictive and due to its numerical
efficiency opens the way for the prediction of optical spectra of large
systems.
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