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Motivation

Spectroscopy: optical absorption of solids

Figure: Adapted from RMP 74, 601 (2002)

-State of the art: Bethe-Salpeter equation but numerically expensive [O(N6)]

-We would like a density-functional approach giving similar results: [O(N3)]



Standard approaches

Underestimation of continuum excitons and absence of bound excitons

RPA = no xc effects in induced potentials (we use a GW corrected band gap.)

ε 2
(ω

)

No excitonic effects



Standard approaches

Absence of Drude tails in spectra of metals

ε 2
(ω

)

Intraband absorption

No relaxation due to scattering effects



Current approaches

Many developments since ∼ 2000

Recent approaches: bootstrap method [PRL 107, 186401], functional derived
from a meta-GGA [PRL 107, 216402], functional based on jellium-with-gap
model [PRB 87, 205143]; guided iteration [PRL 114, 146402 (2015)].

Shortcomings:

1. not parameter free: an ad hoc material-dependent broadening parameter
is used to compare theory and experiment.

2. static: cannot describe finite width of Drude tails and bound excitons

3. explicit calculation of the KS density response function

Our approach:

1. parameter free: truly predictive

2. dynamical: memory effects

3. no explicit calculation of response functions
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Optical absorption from the current

Knowledge of the current density in the unit cell is sufficient to calculate
absorption spectra [ε2 = Im(←→ε M)]

The macroscopic polarization can be obtained from the induced current density

~Pmac(ω) =
−i
ωV

∫
V

d~rδ~j(~r , ω),

(V= volume of unit cell).

It is proportional to the macroscopic electric field:

~Pmac(ω) =←→χ e(ω) · ~Emac(ω),

where the electric susceptibility ←→χ e(ω) is related to ←→ε M :

←→ε M(ω) = 1 + 4π←→χ e(ω).
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Time-dependent current-density-functional theory

Interacting many-body
system in external field
described by {v(~r , t), ~A(~r , t)}

⇐~j(~r , t)⇒

Non-interacting system in an effective
field described by {vKS(~r , t), ~AKS(~r , t)}
with identical ρ(~r , t) and ~j(~r , t).

Linear response (F. Kootstra, et al. JCP 112, 6517 (2000), P. Romaniello and P.L. de Boeij,

PRB 71, 155108 (2005)):

δ~j(~r , ω) = − i

ω

∫
d~r ′←→χ ~j~jKS(~r ,~r ′, ω)[~Emac(ω) + ~E xc(~r , ω)]

+

∫
d~r ′~χ

~jρ
KS(~r ,~r ′, ω)δvHxc

mic (~r ′, ω),

Here we will neglect microscopic contributions to the xc potentials
(δvHxc

mic → δvH
mic ; ~E xc → ~E xc

mac).

We need an approximation for E xc
mac(ω)



Polarization functional

We use a polarization functional:

~E xc
mac(ω) =←→α (ω) · ~Pmac(ω)

Relation to TDCDFT kernel:

←→α (ω) = −ω
2

V

∫
V

d~r

∫
d~r ′
←→
f xc(~r ,~r ′, ω)

←→α (ω) relates ←→χ e(ω) and ←→χ RPA
e (ω)

[←→χ e ]−1(ω) = [←→χ RPA
e ]−1(ω)−←→α (ω)

P.L. de Boeij, F. Kootstra, AB, R. van Leeuwen and J.G. Snijders, JCP 115, 1995 (2001)



Bound exciton

Let us assume that all quantities are isotropic.

χe(ω) =
χRPA
e (ω)

1− χRPA
e (ω)α(ω)

Bound exciton: Im[χe(ω)] has to be nonzero below the band gap
(Im[χRPA

e (ω)] = 0)
Following F. Sottile et al., PRB 68 205112 (2003):

Im[χe(ω)] =
(χRPA

e (ω))2Im[α(ω)]

(1− χRPA
e (ω)Re[α(ω)])2 + (χRPA

e (ω)Im[α(ω)])2

A bound exciton is obtained if for some frequency ωbe < ωgap:

Re[α(ωbe)] =
1

χRPA
e (ωbe)

Im[α(ωbe)]� 1

Unfortunately we do not know ωbe

Can we relate it to a quantity we do know? For example χRPA
e (ω = 0)
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Lorentz model
Limiting case: low-density insulator (Ne/V = small)
RPA spectrum centered around plasmon frequency ωp.

χRPA
e (ω) ≈ −ωp

8π

[
1

ω − ωp + iγ
− 1

ω + ωp + iγ

]
Prefactor ensures that the f-sum rule is satisfied.

True absorption spectrum is dominated by a sharp bound exciton at ω = ωbe :

χe(ω) ≈ −ωbe

8π

[
1

ω − ωbe + iη
− 1

ω + ωbe + iη

]
Prefactor ensures that εM(0) = εRPAM (0).

ωp corresponds to the frequency at which Re[εM(ω)] = 0 and Im[εM(ω)] ≈ 0

ωp =
√

2ωbe

Taylor expansion:

χRPA
e (ωbe) = χRPA

e (0) + 4π[χRPA
e (0)]2 = χRPA

e (0)εRPAM (0)
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A simple polarization functional

Summary:

1. Re[α(ωbe)] = 1/χRPA
e (ωbe) with Im[α(ω)] << 1

2. χRPA
e (ωbe) ≈ χRPA

e (0)εRPAM (0)

We obtain for α

α =
1

εRPAM (ω = 0)χRPA
e (ω = 0)

.

Shortcoming:

Static → no memory effects → unable to account for the finite width of bound
excitons and Drude tails.
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A simple polarization functional

We add
←→
Y VK (ω), the long-range part of the dynamical Vignale-Kohn

functional (exact for an inhomogeneous electron gas) [G. Vignale and W. Kohn, PRL

77, 2037 (1996)]

←→
Y VK (ω) =

1

V

∫
V

d~r

(
∇ρ0(~r) · ∇ρ0(~r)

ρ20(~r)
fxcT (ρ̄, ω)

←→
I

+
∇ρ0(~r)⊗∇ρ0(~r)

ρ20(~r)

[
fxcL(ρ̄, ω)− fxcT (ρ̄, ω)− d2exc

d ρ̄2

])
,

←→
Y VK is complementary to the static part.
It accounts for the finite width of Drude tails and bound excitons.

Final result:

←→α (ω) = [←→ε RPA
M (0)]−1[←→χ RPA

e (0)]−1 +
←→
Y VK (ω)
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No parameters

I Ground state + lattice constant: LDA

I We apply a scissors operator and the energy shift is calculated with GW

I The ~k-space integrals are done analytically using a tetrahedron scheme

We do not include effects due to electron-phonon coupling.

The spectra we obtain are predictions of the optical spectra at low temperature
where electron-electron scattering dominates
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Results: Silicon and GaP
ε 2

(ω
)
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Polarization functional describes continuum excitons.



Results: solid argon and LiF
ε 2

(ω
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Polarization functional describes bound excitons.



Results: diamond and copper
ε 2
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Polarization functional describes Drude tails.



Conclusions

I We presented the first fully parameter-free density-functional approach
that gives accurate optical spectra for insulators, semiconductors and
metals alike.

I Our approach is therefore truly predictive and due to its numerical
efficiency opens the way for the prediction of optical spectra of large
systems.
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