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Electronic Structure Methods
Quantum Chemistry Methods ∼ 102 − 103 developers and users.
Hartree-Fock (HF), Many-Body Perturbation Theory (MBPT), Configuration
Interaction (CI), Coupled Cluster (CC)
Systematically improveable (require double limit of ∞ single-particle basis
(F12 helps!) and all excitation levels) but computational cost is prohibitive,
e.g., Full Configuration Interaction (FCI) is rarely done since cost is O(eN),
CCSD(T) is popular and scales as O(N7).

Density Functional Theory ∼ 102 − 103 developers and users.
Exact in principle, but in practice one uses approximate exchange-correlation
functionals and they are not systematically improvable.

Quantum Monte Carlo ∼ 10− 102 developers and users.
Can be used both at zero and at finite temperatures, and, for finite and for
periodic systems. Some QMC methods work directly with infinite basis.
Low-order polynomial cost if fixed-node or similar approximation is used. FN
approximation is often accurate if good well-optimized trial wavefunctions
are used. Requires ingenuity to keep statistical errors small. Some
observables easier to compute than others.
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Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics
2. chemistry
3. engineering
4. social sciences
5. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the state space is discrete and very large, say > 1010.
2. When the state space is continuous and high dimensional, say > 8.

Obvious drawback of MC methods: There is a statistical error.
Frequently there is a tradeoff between statistical error and systematic error
and one needs to find the best compromise.
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Physics/Chemistry applications of Quantum Monte
Carlo

Some systems to which they have been applied are:

I strongly correlated systems (Hubbard, Anderson, t-J, ... models)
I quantum spin systems (Ising, Heisenberg, xy, ... models),
I liquid and solid helium, liquid-solid interface, droplets
I energy and response of homogeneous electron gas in 2-D and 3-D
I nuclear structure
I lattice gauge theory
I atomic clusters
I electronic structure calculations of atoms, molecules, solids, quantum

dots, quantum wires

I both to zero temperature (pure states) and finite temperature problems,
but in this lecture we will discuss only zero temperature methods
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Early Recorded History of Monte Carlo
1777 Comte de Buffon: If a needle of length L is

thrown at random onto a plane ruled with straight lines a
distance d(d > L) apart, then the probability P of the

needle intersecting one of those lines is P = 2L
πd .

Laplace: This could be used to compute π (inefficiently).

1930s First significant scientific application of MC: Enrico Fermi
used it for neutron transport in fissile material.
Segre: “Fermi took great delight in astonishing his Roman
colleagues with his ”too-good-to-believe” predictions of
experimental results.”

1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

1953 Algorithm for sampling any probability density
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(generalized by Hastings in 1970)

1962,1974 First PMC calculations, Kalos, and, Kalos, Levesque, Verlet.
1965 First VMC calculations (of liquid He), Bill McMillan.
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Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Pólya (1920)

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, and variance σ2. The central limit theorem states that as the sample size
N increases, the probability density of the sample average of these random
variables approaches the normal distribution, 1√

2πσ
e−(x−µ)2/(2σ2/N), with a

mean µ, and variance σ2/N, irrespective of the original probability density
function.

Law of Large Numbers
Cardano, Bernouli, Borel, Cantelli, Kolmogorov, Khinchin

Even if the variance is infinite, if the expected value is finite, the sample
means will converge to the expected value but usual error estimates go down
slower than 1/

√
N and do not imply usual confidence intervals. Beware of

skewed densities that have ∞ variance!
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ε, using Nint integration points:
1-dim Simpson rule: ε ∝ N−4

int , (provided derivatives up to 4th exist)

d-dim Simpson rule: ε ∝ N
−4/d
int , (provided derivatives up to 4th exist)

So, for a given error, N and so the computer time increases exponentially
with d , since N ∝ ( 1

ε )d/4.

Monte Carlo:
ε ∼ σ(Tcorr/Nint)

1/2, independent of dimension!, according to the central
limit theorem since width of gaussian decreases as (Tcorr/Nint)

1/2 provided
that the variance of the integrand is finite. (Tcorr is the autocorrelation
time.)

Roughly, Monte Carlo becomes advantageous for d > 8.
For a many-body wavefunction d = 3N and can be a few thousand!
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Scaling with number of electrons

Simpson’s rule integration

ε =
c

N
4/d
int

=
c

N
4/3Nelec

int

Nint =
(c

ε

) 3Nelec
4

exponential in Nelec

Monte Carlo integration

ε = σ

√
Nelec

NMC

NMC =
(σ
ε

)2
Nelec linear in Nelec

(For both methods, computational cost is higher than this since the cost of
evaluating the wavefunction increases with Nelec, e.g., as N3

elec, (better if one
uses “linear scaling”; worse if one increases Ndet with Nelec.))
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Monte Carlo Integration

I =

∫
V

f (x)dx = V f ± V

√
f 2 − f

2

N − 1

where f =
1

N

N∑
i

f (xi ), f 2 =
1

N

N∑
i

f 2(xi )

and the points xi are sampled uniformly in V .

Importance sampling

I =

∫
V

g(x)
f (x)

g(x)
dx = V

(
f

g

)
± V

√√√√( f
g

)2

−
(

f
g

)2

N − 1

where the probability density function g(x) ≥ 0 and
∫
V
g(x)dx = 1.

If g(x) = 1/V in V then we recover original fluctuations but if g(x) mimics f (x) then the
fluctuations are much reduced. Optimal g is |f |. Need: a) g(x) ≥ 0, b) know integral of
g(x), and, c) be able to sample it.

Importance sampling can turn an ∞−variance estimator into a finite variance one!
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Illustration of Importance Sampling
f (x) is the function to be integrated. g(x) is a function that is “similar” to f (x)
and has the required properties: a) g(x) ≥ 0, b) we know integral of g(x), and, c)
we know how to sample it.

∫
f (x)dx can be evaluated efficiently by sampling g(x)

and averaging f (x)/g(x).
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Typical probability densities in QMC are highly peaked, so importance sampling is essential.
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Quantum Monte Carlo Methods
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What is Quantum Monte Carlo?
Stochastic implementation of the power method for projecting out the
dominant eigenvector of a matrix or integral kernel.

“Dominant state” means state with largest absolute eigenvalue.

If we repeatedly multiply an arbitrary vector, not orthogonal to the dominant
state, by the matrix, we will eventually project out the dominant state.

QMC methods are used only when the number of states is so large (> 1010)
that it is not practical to store even a single vector in memory. Otherwise use
exact diagonalization method, e.g., Lanczos. So, at each MC generation,
only a sample of the states is stored.

QMC methods are used not only in a large discrete space but also in a
continuously infinite space. Hence “matrix or integral kernel” above. In the
interest of brevity I will use either discrete or continuous language (sums and
matrices or integrals and integral kernels), but much of what is said will
apply to both situations.
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact wavefunction |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial wavefunction |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding function |ΨG 〉 =
∑
i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

(If basis incomplete then “exact” means “exact in that basis”.)

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G in VMC, ΨGΨ0 in

PMC.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. Reasons to have ΨG 6= ΨT are: a) rapid
evaluation of “local energy”, b) have finite-variance estimators. To simplify
expressions, we use ΨG = ΨT or ΨG = 1 in what follows.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj∑Nst

k t2
k

=
Nst∑
i

t2
i∑Nst

k t2
k

∑Nst

j Hij tj

ti

=
Nst∑
i

t2
i∑Nst

k t2
k

EL(i) =

[∑NMC

i EL(i)
]

Ψ2
T

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

Sample probability density function
g2
i∑Nst

k
g2
k

using Metropolis-Hastings, if ΨG complicated.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.

Energy bias and statistical error vanish as ΨT → Ψ0.

For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!

In fact need ΨG 6= ΨT at times to get finite variance. ΨG = ΨT does give unbiased estimator.
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

k ektk
=

Nst∑
i

ei ti∑Nst

k ektk

∑Nst

j Hij tj

ti

=
Nst∑
i

ei ti∑Nst

k ektk
EL(i) =

[∑NMC

i EL(i)
]

ΨTΨ0

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

Sample eigi/
∑Nst

k ekgk using projector.

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
(For FN-PMC, value depends on ΨG, statistical error on ΨT,ΨG.)
(For FN-DMC, value depends on nodes of ΨG, statistical error on ΨT,ΨG.)
Statistical error vanishes as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

[∑NMC

i

(
ti
gi

)2
EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

(Value depends on ΨT, error ΨT,ΨG)

E0 =

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(Value exact†. Error depends on ΨT,ΨG.)

EL(i) =

∑Nst

j Hij tj

ti

In both VMC and PMC weighted average of the configuration value of Ĥ aka
local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete)
or semi-diagonal (if space continuous).

† In practice, usually necessary to make approximation (e.g. FN) and value depends on ΨG.
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Projector MC

Projector: |Ψ0〉 = lim
n→∞

P̂n(τ) |ΨT〉

Projector is any function of the Hamiltonian that maps the ground state
eigenvalue of Ĥ to 1, and the highest eigenvalue of Ĥ to an absolute value
that is < 1 (preferably close to 0).

Exponential projector: P̂ = eτ(ET 1̂−Ĥ)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ)

If spectrum is bounded and τ ≤ 1

Emax − Emin
.

Cyrus J. Umrigar



Taxonomy of Projector Monte Carlo Methods
The amplitudes of Ψ0 in the chosen basis are obtained by using a “Projector”, P̂,
that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st-quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) eτ(ET 1̂−Ĥ) (samp. τ) r 1st

LRDMC (Sorella, Casula) eτ(ET 1̂−Ĥ) (samp. τ) ri 1st

FCIQMC/SQMC 1̂ + τ(ET 1̂− Ĥ) φorthog
i 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthog
i 2nd

1 + τ(ET 1̂− Ĥ) and 1
1̂−τ(ET 1̂−Ĥ)

can be used only if the spectrum of Ĥ is bounded.
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Variational Monte Carlo
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling an arbitrary wave function Metropolis-Hastings.
2. A functional form for the wave function that is capable of describing the

correct physics/chemistry.
3. An efficient method for optimizing the parameters in the wave functions.
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Metropolis-Hastings Monte Carlo
Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous density.
(Other quantum Monte Carlo methods, e.g., diffusion MC, enable one to
sample densities that are not explicitly known but are the eigenstates of
known matrices or integral kernels.)

Metropolis-Hastings has serial correlations. Hence, direct sampling methods
preferable, but rarely possible for complicated densities in many dimensions.
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Metropolis-Hastings Monte Carlo (cont)
Construction of M

Impose detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

Detailed balance is not necessary but provides way to construct M.
Write elements of M as product of elements of a proposal matrix T and an
acceptance Matrix A,

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not.
Detailed balance is now:

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

or
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.
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Metropolis-Hastings Monte Carlo (cont)
Choice of Acceptance Matrix A

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.

Infinity of choices for A. Any function

F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
= A(Rf |Ri)

for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1 will do.
Choice of Metropolis et al. F (x) = min{1, x}, maximizes the acceptance:

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
.

Other less good choices for A(Rf |Ri) have been made, e.g. F (x) = x
1+x

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
.

Metropolis: T (Ri|Rf) = T (Rf |Ri), Hastings:T (Ri|Rf) 6= T (Rf |Ri)
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Metropolis-Hastings Monte Carlo (cont)
Choice of Proposal Matrix T

So, the optimal choice for the acceptance matrix A(Rf |Ri) is simple and
known.

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
.

However, there is considerable scope for using one’s ingenuity to come up
with good proposal matrices, T (Rf |Ri), that allow one to make large moves
with large acceptances, in order to make the autocorrelation time small.

In fact for electronic structure calculations it is possible to come up with
T (Rf |Ri) such that the autocorrelation time Tcorr is close to 1.
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Functional form of Trial Wave Function
One of the great advantages of QMC is that one has a great deal of freedom
in the functional form of the trial wavefunction. This is in contrast to other
methods where one is largely restricted to using linear combinations of
determinants, and, furthermore the orbitals in these determinants have to be
expanded in basis functions, such as gaussians or planewaves, that are
amenable to analytic integration.
In QMC one has can utilize one’s intuition about the physics or chemistry of
the problem to come up with good functional forms for the wavefunction.
These functional forms may have several parameters, whose values are not
know a priori, so powerful methods for optimizing these parameters have
been developed.
Some innovative functional forms that have been used are:

1. Antisymmetrized geminal power times Jastrow Sorella, Casula
2. Pfaffian times Jastrow Schmidt, Mitas and coworkers
3. Inhomogeneous backflow times Jastrow Needs and coworkers

Most common form – multideterminant expansion times Jastrow.
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Functional form of Trial Wave Function

ΨT =

(∑
n

dnD↑n D↓n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD↑n D↓n
D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and down
(↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αk

ckα Nkαr
nkα−1
iα e−ζkα riα Ylkαmkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏
αi exp (Aαi )

∏
ij exp (Bij)

∏
αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα , ζkα and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα parms.
∼ N2

atom of ckα parms.
∼ eNatom of dn parms.
Power of QMC:
J parms. do work of dn parms.
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Optimization of Wavefunctions
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Almost all errors reduced by optimizing trial
wavefunctions

1. Statistical error in EVMC and EDMC (both the rms fluctuations of EL

and the autocorrelation time)
2. EVMC

3. Fixed-node error in EDMC (nodes move during optimization). Fixed
node errors can be LARGE. For C2, FN error for 1-det wavefn is 1.6 eV
for total energy and 0.8 eV for well-depth. However, optimized multidet.
wavefn has FN error that is better than chemical accuracy (1 kcal/mole
= 0.043 eV/molecule).

4. Time-step error in DMC (from Trotter-Suzuki approximation)
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal

pseudopotentials
7. Error of observables that do not commute with the Hamiltonian (mixed

estimators, 〈Ψ0|Â|ΨT 〉 not exact even for nodeless ψ0, ψT) if one does
not use forward/side walking.
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Choices to be made when optimizing trial
wavefunctions

1. What precisely do we want to optimize – the objective function or
measure of goodness?

2. What method do we use to do the optimization? If more than one
method is applied to the same objective function, they will of course
give the same wavefunction, but the efficiency with which we arrive at
the solution may be much different.
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Measures of goodness of variational wave functions

min EVMC =
〈ψT|H|ψT〉
〈ψT|ψT〉

= 〈EL〉|ψT|2

min σ2
VMC =

〈ψT|(H − ET)2|ψT〉
〈ψT|ψT〉

=
〈
E 2
L(Ri )

〉
|ψT|2

− 〈EL(Ri )〉2|ψT|2

max Ω2 =
| 〈ψFN|ψT〉 |2

〈ψFN|ψFN〉 〈ψT|ψT〉
=

〈
ψFN
ψT

〉2

|ψT|2〈∣∣∣ψFN
ψT

∣∣∣2〉
|ψT|2

min EDMC =
〈ψFN|H|ψT〉
〈ψFN|ψT〉

= 〈EL〉|ψFNψT|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. → Variance optim. → Efficient energy optim.

− 1988 naive energy optimization, few (∼ 3) parameters

1988 − 2001 variance optimization, ∼ 100 parameters
could be used for more, but, variance does not couple strongly to some parameters

R. Coldwell, IJQC (1977)

CJU, Wilson, Wilkins, Phys. Rev. Lett. (1988)

2001 − efficient energy optimization, ∼ 1000’s of parameters
as many as 500,000
M. P. Nightingale and Alaverdian, Phys. Rev. Lett. (2001)

CJU, C. Filippi, Phys. Rev. Lett. (2005)

J. Toulouse, CJU, J. Chem. Phys. (2007)

CJU, J. Toulouse, C. Filippi, S. Sorella, Phys. Rev. Lett. (2007)

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. (2007)

J. Toulouse, CJU, J. Chem. Phys. (2008)

J. Toulouse, CJU, J. Chem. Phys. (2008)

E. Neuscamma, CJU, G. Chan, J. Chem. Phys. (2012)
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Variance vs. Energy

σ2 =

Nconf∑
i=1

(HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized

Variance

Energies

Original

Energies

Energy
Optimized

Energies

E
av

E
av Eexact
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Take-home Message

Energy optimization methods that minimize the energy
evaluated on finite sample will yield poor energies on other
samples, unless the sample used to do the minimization is
very large.
So, efficient energy optimization methods do NOT optimize
the energy evaluated on a finite sample, although they do
minimize the energy in the limit of an infinite sample.
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Advantages of Energy (or Mixed) Optim. vs.
Variance Optim.

1. Want lowest energy; fluctuations are of secondary importance. Energy
and variance do not always go hand-in-hand enough.

2. Some parameters couple more strongly to energy than variance.
3. Some variance-optimized parameters make wave function too extended.
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Optimization Methods

The optimization methods we use are based on standard methods:

1. Levenberg-Marquardt method
2. Newton method
3. Linear method (though with significant extension to nonlinear

parameters)
4. Perturbation theory

However, all of them need additional ingredients to work with stochastic
methods, and these ingredients improve the efficiency of the method by
several orders of magnitude!
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Ingredients of efficient optimization methods

1. Newton: Add terms to the Hessian that have zero expectation value for
an infinite sample, but, greatly reduce the noise for a finite sample.
CJU and C. Filippi, PRL 2005

2. Linear: Although the true Hamiltonian is symmetric, for a finite sample
a nonsymmetric Hamiltonian satisfies a strong zero-variance principle
and gives much smaller fluctuations. If the space is closed under the
action of H then there is no noise the parameters, regardless of the
sample, provided that it is larger than the number of parameters.
M.P. Nightingale and Melik-Alaverdian, PRL 2001

3. Linear: Extension of the linear method to nonlinear parameters by using
semiorthogonalized parameter derivatives. CJU, J. Toulouse, C. Filippi and S.

Sorella, PRL 2007; J. Toulouse and CJU JCP 2007, 2008

4. Newton and Linear: Automatic procedure for choosing size of moves
and recovering from bad moves.
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Optimization of linear combination of energy and
variance

Energy Minimum

Variance Minimum

1. Can reduce the variance,
without sacrificing
appreciably the energy, by
minimizing a linear
combination, particularly
since the ratio of hard to
soft directions is 11 orders
of magnitude.

2. Easy to do – obvious for
Newton. Not obvious, but
easy to do for linear
method as shown above.

3. Measure of efficiency of the
wave function is σ2Tcorr.
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Convergence of energy of decapentaene C10H12
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Simultaneous optimization of Jastrow, CSFs and
orbitals of all-electron C2 with linear method

J. Toulouse, CJU, J. Chem. Phys. (2007)
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Simultaneous optimization of Jastrow, CSFs and
orbitals of all-electron C2 with linear method

J. Toulouse, CJU, J. Chem. Phys. (2007)
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Projector Monte Carlo Methods
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Schematic of VMC and PMC
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Linear Projector in a Discrete Space

P̂ = 1̂ + τ(ET 1̂− Ĥ), space is: 2nd -quant. space of φorthog
i , i.e., determinants

e.g. Full Configuration Interaction Quantum Monte Carlo (FCIQMC)
Booth, Thom, Alavi, JCP (2009), Cleland, Booth, Alavi, JCP (2010)

States are represented as bit-packed orbital occupation numbers.

Although Hilbert space can be huge, since Ĥ and therefore P̂ is sparse in the
chosen basis, it is possible to sample from all connected states.

1. Starting from state i , sample state j 6= i with probability Tji .
(Tji 6= 0, if Pji 6= 0)

2. Reweight state j by Pji/Tji

3. Reweight state i by Pii

4. Branch states with appropriate probabilities to have unit weight walkers.

If this were the entire algorithm, there would be a fatal sign problem.
Discuss this later.
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Diffusion Monte Carlo – Short-time Green’s function
P̂(τ) = exp(τ(ET 1̂− Ĥ)), |φi 〉 = |R〉 , walkers are 1st-quantized

−1

2
∇2ψ(R, t) + (V(R)− ET)ψ(R, t) = −∂ψ(R, t)

∂t

Combining the diffusion Eq. and the rate Eq. Green’s functions:

〈R′ |P̂(τ)|R〉 ≡ G (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R)2

2τ
+

{
ET− (V(R

′
)+V(R))
2

}
τ

]

The wavefunction,ψ(R
′
, t + τ), evolves according to the integral equation,

ψ(R
′
, t + τ) =

∫
dR G (R

′
,R, τ)ψ(R, t).

Columns of G (R
′
,R, τ) not normalized to 1, so weights and/or branching needed.

Potential energy V → ±∞, so fluctuations in weights and/or population are huge!
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Expectation values

There is an additional problem that the contribution that various MC points
make to expectation values is proportional to ΨT(R):

E =

∫
dR Ψ0(R)H(R)ΨT(R)∫

dR Ψ0(R)ΨT(R)

≈
∑NMC

i H(R)ΨT(R)∑NMC
i ΨT(R)

This is inefficient for Bosonic systems, and is impossible for Fermionic
systems since one gets 0/0.
The problems on previous viewgraph and this one are solved (at the price of
biased expectation values) by using importance sampling and fixed-node
boundary conditions with the approximate wavefunctions ΨT(R). In the limit
that ΨT → Ψ0 the weights of the walkers do not fluctuate at all and every
MC point contributes equally to the expectation values.

In order to have finite variance, it is necessary that ΨT never be nonzero where ΨG is zero. In fact
the usual practice in DMC is ΨG = ΨT and so in this section we will not distinguish between them.
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Diffusion Monte Carlo – Importance Sampled
Fixed-Node Green’s Function

Importance sampling: Multiply imaginary-time the Schrödinger equation

−1

2
∇2Ψ(R, t) + (V(R)− ET)Ψ(R, t) = −∂Ψ(R, t)

∂t

by ΨT(R) and rearranging terms we obtain

−∇
2

2
(ΨΨT) + ∇ ·

(∇ΨT

ΨT
ΨΨT

)
+

(
−∇2ΨT

2ΨT
+ V︸ ︷︷ ︸

EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t

defining f (R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(∇ΨT

ΨT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f
∂t

Since we know the exact Green function for any one term on LHS, an approximation is:

G̃(R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))
2

}
τ

]
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Diffusion Monte Carlo with Importance Sampling

G̃ (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))

2

}
τ

]

The importance-sampled Green function has EL(R) in the reweighting factor,
which behaves MUCH better than the potential, V (R). V (R) diverges to
±∞ at particle coincidences whereas EL(R) goes to a constant, E0, as
ΨT → Ψ0. In addition it has a drift term that keeps the particles in the
important regions, rather than relying on the reweighting to achieve that.

Even this does not always work. Why?

The above importance sampled Green function leads to an “infinite variance”
estimate for systems other than Bosonic ground states!!
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Diffusion Monte Carlo with Importance Sampling

G̃ (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))

2

}
τ

]

The importance-sampled Green function has EL(R) in the reweighting factor,
which behaves MUCH better than the potential, V (R). V (R) diverges to
±∞ at particle coincidences whereas EL(R) goes to a constant, E0, as
ΨT → Ψ0. In addition it has a drift term that keeps the particles in the
important regions, rather than relying on the reweighting to achieve that.

Even this does not always work. Why?
The above importance sampled Green function leads to an “infinite variance”
estimate for systems other than Bosonic ground states!!
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Singularities of Green’s function
CJU, Nightingale, Runge, JCP 1993

Region Local energy EL Velocity V
Nodes EL ∼ ± 1

R⊥
for ΨT V ∼ 1

R⊥
EL = E0 for Ψ0 for both ΨT and Ψ0

e-n and e-e EL ∼ 1
x if cusps not imposed V has a discontinuity

coincidences EL finite if cusps are imposed for both ΨT and Ψ0

EL = E0 for Ψ0

All the above infinities and discontinuities cause problems, e.g.,∫ a

0
dx EL =

∫ a

0
dx

(
1

x

)
= ±∞∫ a

0
dx E 2

L =

∫ a

0
dx

(
1

x

)2

=∞

Modify Green’s function, by approximately integrating EL and V over path,
taking account of the singularities, at no additional computational cost.
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Nonanalyticity of velocity near a node
CJU, Nightingale, Runge, JCP 1993

Linear approximation to ΨT (knowing V = ∇ΨT/ΨT):

ΨT(R
′
) = ΨT(R) +∇ΨT(R) · (R

′ − R)

∝ 1 + V · (R
′ − R)

The average velocity over the time-step τ is:

V̄ =
−1 +

√
1 + 2V 2τ

V 2τ
V→

{
V if V 2τ � 1√

2
τ V̂ if V 2τ � 1

Infinite local energy near node
Make similar improvement to the growth/decay term of the Green’s function
by averaging of the local energy over time-step τ .
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Discontinuity of velocity at particle coincidences
The e-N coincidence is more important than e-e coincidences because the
wavefunction is larger in magnitude there.
Sample from linear combination of drifted Gaussians and exponential centered on
nearest nucleus.

Infinite local energy near particle coincidences
Kato, Pure Appl. Math (1957), Pack and Byers-Brown, JCP, (1966), 2nd order, Tew, JCP (2008)

Impose e-N and e-e cusp conditions on the wavefunction, so that divergence in
potential energy is exactly canceled by divergence in kinetic energy.

Ψ =
∞∑
l=0

l∑
m=−l

r l flm(r) Y m
l (θ, φ)

flm(r) ≈ f 0
lm

[
1 +

qiqjµij r

l + 1
+ O(r 2)

]
with f 0

lm being the first term in the expansion of flm(r).
Familiar example: e-N cusp for s-state of Hydrogenic atom is −Z . e-e cusps are 1/2 and

1/4 for ↑↓ and ↑↑ respectively. (This is why we chose two of the parameters in the

wavefunction in the lab to be -2 and 1/2.)
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Combining with Metropolis to reduce time-step error
Reynolds, Ceperley, Alder, Lester, JCP 1982

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(∇ψT

ψT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f

∂t

If we omit the growth/decay term then |ΨT|2 is the solution.
But we can sample |ΨT|2 exactly using Metropolis-Hastings! So, view G (R

′
,R, t) as

being the proposal matrix T (R′,R) and introduce accept-reject step after drift and
diffusion steps.

Since some of the moves are rejected, use an effective τeff < τ in the reweighting
term. , CJU, Nightingale, Runge, JCP (1993)
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Zero-Variance zero-bias estimators for diagonal
operators that do not commute with H

Assaraf and Caffarel, JCP (2003)

δE = O(|δΨ|2), σ2(EL) = O(|δΨ|2)

but

δO = O(|δΨ|), σ2(OL) = O(1)

Define a λ-dependent Hamiltonian Ĥλ = Ĥ + λÔ with an associated
λ-dependent eigenfunction Ψλ

0 = Ψ0 + λΨ′0 + · · · and an approx.

Ψλ = Ψ + λΨ′, then instead of 〈Ψ|Ô|Ψ〉〈Ψ|Ψ〉 compute

d

dλ

[
〈Ψλ|Ĥλ|Ψλ〉
〈Ψλ|Ψλ〉

]
=
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 +

〈Ψ′|(Ĥ − E )|Ψ〉
〈Ψ|Ψ〉 +

〈Ψ|(Ĥ − E )|Ψ′〉
〈Ψ|Ψ〉

δO = O(|δΨ2|) +O(|δΨδΨ′|)
σ2(OL) = O(|δΨ2|) +O(|δΨδΨ′|) +O(|δΨ′2|)
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Application of ZVZB ideas to compute system
averaged pair density (using intentionally bad Ψ)

Toulouse, Assaraf, CJU, JCP (2007)
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Expectation values of operators

We wish to compute the pure (as opposed to mixed) expectation value

〈A〉pure =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

Consider various cases in order of increasing difficulty:
M.P. Nightingale, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by

M.P. Nightingale and CJU

1. Â commutes with with Ĝ or equivalently Ĥ and is near-diagonal in
chosen basis. (mixed expectation value)

2. Â is diagonal in chosen basis. (forward/future walking) Liu, Kalos, and

Chester, PRA (1974)

3. Â is not diagonal in chosen basis, but, Aij 6= 0 only when Gij 6= 0.
(forward/future walking)

4. Â is not diagonal in chosen basis. (side walking) Barnett, Reynolds, Lester,

JCP (1992)
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Expectation values of operators
Factor the elements of the importance-sampled projector, G̃ (R

′
,R), as products of

elements of a stochastic matrix/kernel (elements are nonnegative and elements of

column sum to 1), T̃ (R
′
,R), and a reweight factor, w(R

′
,R).

G̃ (R
′
,R) = T̃ (R

′
,R)w(R

′
,R)

In the case of DMC

T̃ (R
′
,R) = Gdif(R

′
,R
′′

) Gdrift(R
′′
,R) =

1

(2πτ)3N/2
e−

(R
′
−R−Vτ)2

2τ

w(R
′
,R) = e

{
ET−

(EL(R
′

)+EL(R))

2

}
τ

For discrete state space and sparse H, define

T̃ (R
′
,R) =

G̃ (R
′
,R)∑

R′′ G̃ (R′′ ,R)

w(R
′
,R) = w(R) =

∑
R′′

G̃ (R
′′
,R)
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1) Â commutes with with Ĥ and is near-diagonal in
chosen basis

By near diagonal we mean that either:

1. In discrete space Â is sufficiently sparse that when walker is at state i ,
AL,i =

∑
j gjAji/gi can be computed sufficiently quickly, or

2. In continuous space Â has only local and local-derivative terms, e.g.,
−1
2

∑
i ∇2

i + V (R).

Since Â commutes with with Ĥ the mixed estimator equals the pure
estimator

〈A〉mix =
〈Ψ0|Â|ΨT〉
〈Ψ0|ΨT〉

=
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

= 〈A〉pure
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1) Â commutes with with Ĥ and is near-diagonal in
chosen basis

〈A〉 =
〈ΨT|Â|Ψ0〉
〈ΨT|Ψ0〉

=
〈ΨT|ÂG p(τ)|ΨT〉
〈ΨT|G p(τ)|ΨT〉

=

∑
Rp···R0

AΨT(Rp)
(∏p−1

i=0 G (Ri+1,Ri )
)

ΨT(R0)∑
Rp···R0

ΨT(Rp)
(∏p−1

i=0 G (Ri+1,Ri )
)

ΨT(R0)

=

∑
Rp···R0

AΨT(Rp)
ΨT(Rp)

(∏p−1
i=0 G̃ (Ri+1,Ri )

)
(ΨT(R0))2∑

Rp···R0

(∏p−1
i=0 G̃ (Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T
t=Teq+1 AL(Rt)Wt∑Teq+T

t=Teq+1 Wt

since MC pts. from

(
p−1∏
i=0

T̃ (Ri+1,Ri )

)
(ΨT(R0))2

Wt =
∏p−1

i=0 w(Rt−i ,Rt−i−1) or better Wt =
∏Teq+t−1

i=0 w(RTeq+t−i ,RTeq+t−i−1).

Branching (described later) is used to prevent inefficiency due wide disparity in weight products.
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2) Expectation values of diagonal operators that do not commute with Ĥ

DMC straightforwardly gives us

〈A〉mix =
〈Ψ0|Â|ΨT〉
〈Ψ0|ΨT〉

=

∫
dR 〈Ψ0|R〉 〈R|Â|R〉 〈R|ΨT〉∫

dR 〈Ψ0|R〉 〈R|ΨT〉
=

∫
dR Ψ0(R) A(R) ΨT(R)∫

dR Ψ0(R) ΨT(R)

but we want

〈A〉pure =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

=

∫
dR 〈Ψ0|R〉 〈R|Â|R〉 〈R|Ψ0〉∫

dR 〈Ψ0|R〉 〈R|Ψ0〉
=

∫
dR Ψ0(R) A(R) Ψ0(R)∫

dR Ψ0(R) Ψ0(R)

Two possibilities: Extrapolated estimator and forward walking
1) Extrapolated estimator

〈A〉DMC = 〈A〉pure +O(||ΨT −Ψ0||)
〈A〉VMC = 〈A〉pure +O(||ΨT −Ψ0||)

2〈A〉DMC − 〈A〉VMC = 〈A〉pure +O(||ΨT −Ψ0||)2
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2) Expectation values of diagonal operators that do not commute with Ĥ
Forward or Future Walking

〈A〉 =
〈ΨT|Gp(τ)ÂGp′(τ)|ΨT〉
〈ΨT|Gp+p′(τ)|ΨT〉

=

∑
Rp+p′ ···R0

A(Rp′)
(∏p+p′−1

i=0 G̃(Ri+1,Ri )
)

(ΨT(R0))2∑
Rp+p′ ···R0

(∏p+p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T
t=Teq+1 A(Rt)Wt+p∑Teq+T

t=Teq+1 Wt+p

Wt+p =
∏p+p′−1

i=0 w(Rt+p−i ,Rt+p−i−1) (product over p′ past and p future) or

better Wt+p =
∏Teq+t+p−1

i=0 w(RTeq+t+p−i ,RTeq+t+p−i−1), (product over entire past
and p future generations).
The contribution to the expectation value is: the local operator at time t, multiplied
by the weight at a future time t + p. Need to store A(Rt) for p generations.

Usual tradeoff: If p is small, there is some residual bias since ΨT has not been fully

projected onto Ψ0, whereas, if p is large the fluctuations of the descendent weights

increases the statistical noise. (Since we use branching, weight factors from past are not

a problem.) For very large p all walkers will be descended from the same ancestor.

(Mitochondrial Eve! – All humans alive today had same maternal ancestor 105 yrs ago.)
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3) Â is not diagonal in chosen basis, but, Aij 6= 0 only when Gij 6= 0

Forward or Future Walking

〈A〉 =
〈ΨT|G p−1(τ)ÂG p′(τ)|ΨT〉
〈ΨT|G p+p′(τ)|ΨT〉

=

∑
Rp+p′ ···R0

(∏p+p′−1
i=p′+1 G̃(Ri+1,Ri )

)
Ã(Rp′+1,Rp′)

(∏p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2∑

Rp+p′ ···R0

(∏p+p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T

t=Teq+1 Wt+p−1,t+1 a(Rt+1,Rt) Wt,t−p′∑Teq+T

t=Teq+1 Wt+p

a(Rt+1,Rt) = Ã(Rt+1,Rt)

T̃ (Rt+1,Rt)
= A(Rt+1,Rt)

T (Rt+1,Rt)

Wt2,t1 =
∏t2−1

i=t1
w(Ri+1,Ri )

Again, the product of p′ past weights can be replaced by products of weights
over entire past.
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Â 4) is not diagonal in chosen basis, and, ∃ some Aij 6= 0 where Gij = 0
Side Walking

Now it becomes necessary to have side walks that start from the backbone
walk.

Just as we did for the importance-sampled projector, we factor Ã into a
Markov matrix and a reweighting factor.

The first transition of the side walk is made using this Markov matrix and
and the rest of the side-walk using the usual Markov matrix.

The ends of the side-walks contribute to the expectation values.

This method is even more computationally expensive than forward walking,
because one has to do an entire side walk long enough to project onto the
ground state to get a single contribution to the expectation value.
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Sign Problem

The nature of the sign problem is different in the various methods,
depending on the space in which the walk is done.
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ)

Walk is done in the basis of the 3N coordinates of the N electrons.

〈R|P̂(τ)|R′〉 ≈ e

−
(

R−R
′)2

2τ +

(
ET−

V(R)+V(R
′

)
2

)
τ

(2πτ)3N/2 is nonnegative.

Problem: However, since the Bosonic energy is always lower than the
Fermionic energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.
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Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

Start with equal + and - walkers, so no Bosonic component.

Plus walkers

Minus walkers
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Problem: In large space walkers rarely meet and cancel!
Worse Problem: Eventually + or - walkers dominate, there are no more
cancellations and only one Bosonic component remains!
Cyrus J. Umrigar



Sign Problem in 2nd quantization
Walk is done in the basis of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of having a
stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign. Further,
Ψ and −Ψ are equally good.

The projector in the chosen 2nd -quantized basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign, e.g.

PΨ =


+ − + +
− + − −
+ − + +
+ − + +




+
−
+
+

 =


+
−
+
+


or equivalently:
It is possible to find a set of sign changes of the basis functions such that all elements of
the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC generations.
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Sign Problem in orbital space and 2nd Quantization

FCIQMC (Booth, Thom, Alavi, JCP 2009, Ohtsuka, Nagase, CPL 2008)

P̂ = 1̂ + τ(ET 1̂− Ĥ), space is: 2nd -quantized φorthog
i , i.e., determinants

It is practical to have a population that is sufficiently large that cancellations
in this discrete space can result in a finite signal to noise ratio for small
systems in small basis sets. Once a critical population size is reached the
probability of sign flips of the population rapidly become very small.

Initiator approximation (Cleland, Booth, Alavi, JCP (2010)
The required population size can be greatly reduced by allowing only
determinants occupied by more than a certain number of walkers to spawn
progeny on unoccupied determinants.

Becomes exact in the limit of infinite population size.
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Semistochastic Quantum Monte Carlo (SQMC)

Frank Petruzielo, Adam Holmes, Hitesh Changlani, Peter Nightingale, CJU, PRL 2012

SQMC is hybrid of Exact Diagonalization and QMC

Exact diagonalization has no statistical error or sign problem but is limited to a
small number of states (∼ 1010 on a single core).

QMC has statistical errors and a sign problem but can employ a much larger number
of states, even infinite.

SQMC combines to some extent the advantages of the above by doing a
deterministic projection in a small set of important states and stochastic projection
in the rest of the space. It has a much smaller statistical error than stochastic
projection and can employ a large number of states.

More generally Semistochastic Projection is an efficient way to find the dominant

eigenvalue and corresponding expectation values of any large sparse matrix that has

much of its spectral weight on a manageable number of states.
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Semistochastic Projection

The part of the projection with both indices in the deterministic part is done
deterministically. The part of the projection with either index in the
stochastic part is done stochastically.

P = PD + PS

PDij =

{
Pij , i , j ∈ D

0, otherwise
PS = P − PD
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Diagonal elements in PS

Since Pij = δij + τ(ET δij − Hij)

the diagonal contribution to the walker weight on |φj〉, with j ∈ S, is

Pjjwj(t) = [1 + τ(ET − Hjj)] wj(t)

Off-diagonal elements in PS

Weight wi is divided amongst ni = max(bwie, 1) walkers of wt. wi/ni .
For each walker on |φi 〉, a move to |φj〉 6= |φi 〉 is proposed with probability
Tji > 0, (

∑
j Tji = 1), where T is the proposal matrix.

The magnitude of the contribution to the walker weight on |φj〉 from a single
walker on |φi 〉 is0, i , j ∈ D

Pji

Tji

wi (t)

ni (t)
= −τ Hji

Tji

wi (t)

ni (t)
otherwise
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Elements in PD

The contribution to the weight on a deterministic state, |φj〉, (j ∈ D), from
all deterministic states is simply

wj(t + 1) =
∑
i∈D

PDji wi (t).

PD is stored and applied as a sparse matrix
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Construction of deterministic space and ΨT

Construction of deterministic space and ΨT is done once and for all before
start of MC run.

1. Start with a likely state, e.g., Hartree-Fock.
2. Construct all states connected to the current wavefunction and keep the

ones that make large contributions in 2nd -order perturbation theory
3. Diagonalize in this space
4. iterate

For some systems iterating 2-4 times can give large gain compared to
iterating once, i.e., higher order excitations help a lot.

Cyrus J. Umrigar



SQMC
Main differences between SQMC and FCIQMC:

1. Deterministic projection in part of space

2. Multideterminantal ΨT, particularly important for strongly correlated
states

3. Real (rather than integer) weights, |ψ(t)〉 =
∑N

i=1 wi (t)|φi 〉
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Efficiency Gains in 8× 8 Hubbard Model, N = 10
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Efficiency gain for C2 (3− ζ basis)

from semistochastic projection and ΨT
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Wavefns. with 165 or 1766 dets. containing some 4th-order excit. are much more
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Comparison of DMC with FCIQMC/SQMC

DMC (walk in electron coordinate space) FCIQMC/SQMC (walk in determinant space)

Severe Fermion sign problem due to growth Less severe Fermion sign problem due to
of Bosonic component relative to Fermionic. opposite sign walkers being spawned on

the same determinant

Fixed-node approximation needed for Walker cancellation, large population,
stable algorithm. initiator approximation needed for stable

algorithm.
Exact if ΨT nodes exact. Exact in ∞-population limit.

Infinite basis. Finite basis. (Same basis set dependence
as in other quantum chemistry methods.

Computational cost is low-order polynomial Computational cost is exponential in N but
in N with much smaller exponent than full CI

Energy is variational Energy not variational but DM variant is

Need to use pseudopotentials for large Z . Can easily do frozen-core
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Applications
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Parallel Efficiency of DMC
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Convergence of C2 and Si2
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Well-depth of C2

Cyrus J. Umrigar



Error in Well-Depth of 1st-Row Diatomic Molecules
Julien Toulouse and CJU, J. Chem. Phys. (2008)
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Error in Well-Depth of 1st-Row Diatomic Molecules
Julien Toulouse and CJU, J. Chem. Phys. (2008)
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Atomization energies of the G2 set
F.R. Petruzielo, Julien Toulouse and CJU, J. Chem. Phys. (2012)
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Excited states
Previous work: Ceperley & Bernu; Nightingale; Filippi

Excited states that are the lowest state of that symmetry are no harder than
ground states.

True excited states are harder to compute. Options for computing true
excited states:

1. Take determinantal part of wavefunction from another method, e.g,
MCSCF, multiply it by Jastrow factor and rely on fixed-node constraint
to prevent collapse to ground state. Not very satisfactory.

2. Do state-averaged optimization of ground and excited states,
alternating between calculating the linear coefficients of the states and
optimizing the nonlinear (orbital, basis exponent and Jastrow)
coefficients. Guarantees upper bound. (M. P. Nightingale et al. for
bosonic clusters; Claudia Filippi et al. for molecules)

3. Do a state-specific optimization of each state separately. Sometimes has
root-flipping problems but sometimes it works.
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Excited states of methylene (CH2)
Zimmerman, Toulouse, Zhang, Musgrave, CJU, (submitted to JCP)

see talk COMP 0344 for more details

States of methylene (CH2) are:

1 3B2, ground state, single reference

1 1A1, 1st excited state, multi reference

1 1B2, 2nd excited state, single reference

2 1A1, 3rd excited state, multi reference, true excited state
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EFP method for ground and excited states

F. Schautz and C. Filippi, JCP 120, 10931 (2004)

• Excitations of ethene C2H4 → Up to 858 optimized parameters

DMC excitation energies

State Unoptimized Optimized expt. (eV)

11B1u 8.45(2) 7.93(2) >7.7

21Ag 7.96(2) 8.36(2) 8.29

21B1u 9.05(2) 9.37(2) 9.33
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Localization in planar quantum dots
Devrim Güçlü, Amit Ghosal, CJU, Harold Baranger

Signatures of localization

1. Pair densities.
2. Addition energy spectrum evolving from noninterating limit to classical

limit.
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Pair densities and power spectrum of N = 18 dot
rs = 4.8 rs = 52
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∆2E/ω for different ω or rs (strong in-plane B)
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Localization in inhomogeneous quantum wires
Güçlü, Jiang, CJU, Baranger

H = −1

2

N∑
i

52
i +

1

2

N∑
i

ω2(ri − r0)2 +
N∑
i<j

1

rij

+ Vg {tanh [s(θi + θ0)]− tanh [s(θi − θ0)]}
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Localization in inhomogeneous quantum wires
Güçlü, Jiang, CJU, Baranger
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Quantum Zigzag Phase Transition in Quantum Wires
Abhijit Mehta, CJU, Julia Meyer, Harold Baranger

Consider a 2-d wire, along the x direction with a finite width along the y direction.

H = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i=1

ωy 2
i +

∑
i<j≤N

e2

ε|ri − rj |
(1)

At low densities electrons form linear Wigner crystal. Two length scales:
rs = 1/(2n), and,
r0: confinement and Coulomb energies are equal (1/2)mω2r 2

0 = e2/(εr0).
As density n is raised, expect a transition to a zigzag phase when rs ≈ r0 before
transition to liquid phase.

(a) Linear (b) Zigzag

rs
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Pair densities at ω = 0.1
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Pair densities at ω = 0.6
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Zigzag Correlation Function

CZZ (|i − j |) =
〈
(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)

〉
Order electrons along the length of the wire.

Zigzag order is tied to the ordering of the electrons, not their position along
the wire.
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Zigzag Correlation Function ω = 0.1, 0.6
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Zigzag Order Parameter

CZZ (|i − j |) =
〈
(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)

〉
Zigzag order parameter, MZZ . M2

ZZ , is average of zigzag correlation
function, CZZ (|i − j |), for electrons far from the fixed reference electron.

M2
ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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Zigzag Order Parameter
M2

ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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