Close coupling CI-approach of atomic and molecular collisions: new perspectives on inner-shell processes in H+ - Li GDR CORRÉLATION 29-11-2013

<u>Gabriel Labaigt</u>, Alain Dubois LCPMR UMR7614, 11 rue Pierre et Marie Curie, 75005 Paris, France.

I. Context

The system:

Atomes, molecules, neutral or charged:

- v ~ [0.02-10] u.a. (1u.a ~2 10⁶ m/s)
- E ~ 50eV 1 MeV

 \longrightarrow not thermal, nor reactive, nor subatomic ...

Study of electronic processes:

- Excitation $: H^+ + H \rightarrow H^+ + H^*$
- Ionisation : $\mathrm{H^+} + \mathrm{H} \rightarrow 2\mathrm{H^+} + e^-$
- Capture : $\mathrm{H}^+ + \mathrm{H} \rightarrow \mathrm{H}^* + \mathrm{H}^+$

Observables:

total cross sections $\sigma(v)$

I. Context

Study of electronic processes:

- Excitation : $H^+ + H \rightarrow H^+ + H^*$
- Ionisation : $\mathrm{H^+} + \mathrm{H} \rightarrow 2\mathrm{H^+} + e^-$

- Capture :
$$H^+ + H \rightarrow H^* + H^+$$

Observables: total cross sections $\sigma(v)$

I. Context

The system:

Atomes, molecules, neutral or charged:

- v ~ [0.02-10] u.a. (1u.a ~2 10⁶ m/s)
- E ~ 50eV 1 MeV

Applications:

Plasma diagnostics: interstellar clouds / tokamaks ...

Development to biological molecules: hadrontherapy

Study of electronic processes:

- Excitation $: H^+ + H \rightarrow H^+ + H^*$
- Ionisation : $\mathrm{H^+} + \mathrm{H} \rightarrow 2\mathrm{H^+} + e^-$
- Capture : $\mathrm{H}^+ + \mathrm{H} \rightarrow \mathrm{H}^* + \mathrm{H}^+$

Observables:

total cross sections $\sigma(v)$

II. Model

Context, Quantum mechanics:

Schrödinger equation independent of time:

 $\hat{\mathbf{H}}^{tot} \boldsymbol{\Psi}^{tot} = \mathbf{E}^{tot} \boldsymbol{\Psi}^{tot}$

Semi-classical approximation :

- Separation of nuclear and electronic coordinates

- Classical nuclear dynamics: so called impact parameter approximation

II. Model

Context, Quantum mechanics:

Schrödinger equation independent of time:

 $\hat{\mathbf{H}}^{tot} \boldsymbol{\Psi}^{tot} = \mathbf{E}^{tot} \boldsymbol{\Psi}^{tot}$

Semi-classical approximation :

- Separation of nuclear and electronic coordinates

- Classical nuclear dynamics: so called impact parameter approximation

Équation Eikonale :

$$[\hat{\mathbf{H}}_{el}(t) - i\partial_t]\Psi(\{\vec{r_i}\}, t) = 0$$

II. Model

Context, Quantum mechanics:

Schrödinger equation independent of time:

 $\hat{\mathbf{H}}^{tot} \boldsymbol{\Psi}^{tot} = \mathbf{E}^{tot} \boldsymbol{\Psi}^{tot}$

Semi-classical approximation :

- Separation of nuclear and electronic coordinates

- Classical nuclear dynamics: so called impact parameter approximation

III. Benchmark: the proton – lithium collision

The system:

The charge exchange process in: $H^+ + Li(1s^22s^1)$

The reasons:

- Extensively studied:
 - but never completely
 - nor in a wide energy/velocity range
- Good candidate to check:
 - electronic correlation effects
 - frozen core/model potential approx.

- Two regimes: *K* and *L*

IV. 3 electrons non pertubative resolution

$$[\hat{\mathbf{H}}_{el}(t) - i\partial_t]\Psi(\{\vec{r_i}\}, t) = 0$$

 Ψ developped on a basis of asymptotic states:

with
$$\tilde{\Phi}_j(\{\vec{r_i}\},t) = \Phi_j(\{\vec{r_i}\})e^{-iE_jt} \times ETF$$

$$\Psi = \sum_{j} c_j(t) \tilde{\Phi}_j(\{\vec{r_i}\}, t)$$

ETF = $\prod_{i} e^{-i\vec{v} \cdot \vec{r_i}}$

IV. 3 electrons non pertubative resolution

$$[\hat{\mathbf{H}}_{el}(t) - i\partial_t]\Psi(\{\vec{r_i}\}, t) = 0$$

$$\begin{split} \Psi &\text{developped on a basis of asymptotic states:} \qquad \Psi = \sum_{j} c_j(t) \tilde{\Phi}_j(\{\vec{r_i}\}, t) \\ \text{with} \quad \tilde{\Phi}_j(\{\vec{r_i}\}, t) = \Phi_j(\{\vec{r_i}\}) e^{-iE_j t} \times \text{ETF} \qquad \text{ETF} = \prod_i e^{-i\vec{v}\cdot\vec{r_i}} \\ \text{For:} \quad \mathrm{H}^+ + \mathrm{Li}(1s^22s^1) \to \mathrm{H}^+ + \mathrm{Li}^* \\ \Phi(\{\vec{r_i}\}) &:= \phi^{\mathrm{Li}}(1s^22s^1), \ \phi^{\mathrm{Li}}(1s^23s^1), \ \phi^{\mathrm{Li}}(1s^12s^12p^1) \dots \qquad \Phi^{\mathrm{TTT}} \end{split}$$

IV. 3 electrons non pertubative resolution

$$[\hat{\mathbf{H}}_{el}(t) - i\partial_t]\Psi(\{\vec{r_i}\}, t) = 0$$

$$\begin{split} \Psi \, \text{developped on a basis of asymptotic states:} & \Psi = \sum_{j} c_{j}(t) \tilde{\Phi}_{j}(\{\vec{r_{i}}\}, t) \\ \text{with } \quad \tilde{\Phi}_{j}(\{\vec{r_{i}}\}, t) = \Phi_{j}(\{\vec{r_{i}}\})e^{-iE_{j}t} \times \text{ETF} & \text{ETF} = \prod_{i} e^{-i\vec{v}\cdot\vec{r_{i}}} \\ \text{For: } \quad H^{+} + \text{Li}(1s^{2}2s^{1}) \to H^{+} + \text{Li}^{*} \\ \Phi(\{\vec{r_{i}}\}) &:= \phi^{\text{Li}}(1s^{2}2s^{1}), \ \phi^{\text{Li}}(1s^{2}3s^{1}), \ \phi^{\text{Li}}(1s^{1}2s^{1}2p^{1}) \dots & \Phi^{\text{TTT}} \\ \text{For: } \quad H^{+} + \text{Li}(1s^{2}2s^{1}) \to H^{*} + \text{Li}^{+} \\ \Phi(\{\vec{r_{i}}\}) &:= \phi^{\text{Li}^{+}}(1s^{2})\phi^{\text{H}}(2s), \ \phi^{\text{Li}^{+}}(1s^{1}2s^{1})\phi^{\text{H}}(2s) \dots & \Phi^{\text{TTP}} \end{split}$$

- States are developed on an optimised set of gaussian orbitals:

$$\Phi(\{\vec{r_i}\}) = \sum_{i,j,k} C_{i,j,k} \mathcal{G}_i(\vec{r_1}) \mathcal{G}_j(\vec{r_2}) \mathcal{G}_k(\vec{r_3}) \qquad \qquad \mathcal{G}_i(\vec{r}) = Y_{l_i,m_i}(\vec{r}) e^{-\alpha_i r^2}$$

- States are developed on an optimised set of gaussian orbitals:

$$\Phi(\{\vec{r_i}\}) = \sum_{i,j,k} C_{i,j,k} \mathcal{G}_i(\vec{r_1}) \mathcal{G}_j(\vec{r_2}) \mathcal{G}_k(\vec{r_3}) \qquad \qquad \mathcal{G}_i(\vec{r}) = Y_{l_i,m_i}(\vec{r}) e^{-\alpha_i r^2}$$

- The big question is : How one can obtain spin adapated states ?

How one can obtain spin adapated states ? $|\Phi\rangle = \sum_{i,j,k} C_{i,j,k} |ijk\rangle$

How one can obtain spin adapated states ? $|\Phi\rangle = \sum_{i,j,k} C_{i,j,k} |ijk\rangle$

- Singlet states:
$$|\Phi\rangle = \sum_{i \le j} C_{i,j}(|ij\rangle + |ji\rangle) = \sum_{i \le j} C_{i,j} \hat{S}_{12} |ij\rangle$$

- Triplet states:
$$|\Phi\rangle = \sum_{i < j} C_{i,j} (|ij\rangle - |ji\rangle) = \sum_{i < j} C_{i,j} \hat{A}_{12} |ij\rangle$$

How one can obtain spin adapated states ? $|\Phi\rangle = \sum_{i,j,k} C_{i,j,k} |ijk\rangle$

- Singlet states:
$$|\Phi\rangle = \sum_{i \le j} C_{i,j}(|ij\rangle + |ji\rangle) = \sum_{i \le j} C_{i,j} \hat{S}_{12} |ij\rangle$$

- Triplet states:
$$|\Phi\rangle = \sum_{i < j} C_{i,j} (|ij\rangle - |ji\rangle) = \sum_{i < j} C_{i,j} \hat{A}_{12} |ij\rangle$$

- Reason: spatial and spin parts are separable.
- This no more the case for more than 2 electrons functions...

How one can obtain spin adapated states ? $|\Phi\rangle = \sum_{i,j,k} C_{i,j,k} |ijk\rangle$

- Singlet states:
$$|\Phi\rangle = \sum_{i \le j} C_{i,j}(|ij\rangle + |ji\rangle) = \sum_{i \le j} C_{i,j} \hat{S}_{12} |ij\rangle$$

- Triplet states:
$$|\Phi\rangle = \sum_{i < j} C_{i,j} (|ij\rangle - |ji\rangle) = \sum_{i < j} C_{i,j} \hat{A}_{12} |ij\rangle$$

- Reason: spatial and spin parts are separable.
- This no more the case for more than 2 electrons functions...
- Moreover, the notion of spin here is irrelevant, no need of Slater determinants!

How one can obtain spin adapated states ? $|\Phi\rangle = \sum_{i,j,k} C_{i,j,k} |ijk\rangle$

- Singlet states:
$$|\Phi\rangle = \sum_{i \le j} C_{i,j}(|ij\rangle + |ji\rangle) = \sum_{i \le j} C_{i,j} \hat{S}_{12} |ij\rangle$$

- Triplet states:
$$|\Phi\rangle = \sum_{i < j} C_{i,j} (|ij\rangle - |ji\rangle) = \sum_{i < j} C_{i,j} \hat{A}_{12} |ij\rangle$$

- Reason: spatial and spin parts are separable.
- This no more the case for more than 2 electrons functions...
- Moreover, the notion of spin here is irrelevant, no need of Slater determinants!
- The solution : Young diagrams and tableaux.

VI. Group theory and Young diagrams

- Young diagrams, for $N_e=3$:

Each of them is associated with a given permutation symmetry and, under the Pauli principle, to a given multipicity

VI. Group theory and Young diagrams

Each of them is associated with a given permutation symmetry and, under the Pauli principle, to a given multipicity

VI. Group theory and Young diagrams

- Young diagrams, for $N_e=3$: Each of them is associated with a given permutation symmetry and, under the Pauli principle, to a given multipicity

- For doublet states:

VI. Group theory and Young diagrams (2)

$$\phi(\{\vec{r_i}\}) = \sum_{i \le j, i < k}^{N_G} C_{ijk} \, \hat{A}_{13} \hat{S}_{12} \, |ijk\rangle$$

- Do not consider inherent properties of asymptotical states: $\langle i'j'k'|H_e^*|ijk\rangle = 0$ \longrightarrow existence of sub-symmetries: singlet+doublet, triplet+doublet for Φ^{TTP} states

VI. Group theory and Young diagrams (2)

$$\phi(\{\vec{r_i}\}) = \sum_{i \le j, i < k}^{N_G} C_{ijk} \, \hat{A}_{13} \hat{S}_{12} \, |ijk\rangle$$

- Do not consider inherent properties of asymptotical states: $\langle i'j'k'|H_e^*|ijk\rangle = 0$ \longrightarrow existence of sub-symmetries: singlet+doublet, triplet+doublet for Φ^{TTP} states

- A diagrammatic solution exists, let's cut of the primary diagram:

VI. Group theory and Young diagrams (2)

$$\phi(\{\vec{r_i}\}) = \sum_{i \le j, i < k}^{N_G} C_{ijk} \, \hat{A}_{13} \hat{S}_{12} \, |ijk\rangle$$

- Do not consider inherent properties of asymptotical states: $\langle i'j'k'|\mathbf{H_e}^*|ijk\rangle = 0$

 \rightarrow existence of sub-symmetries: singlet+doublet, triplet+doublet for Φ^{TTP} states

VII. Conclusion of the theoretical part

$$\Psi = \sum_{j} c_{j}^{\mathrm{TTT}}(t) \phi_{j}^{\mathrm{TTT}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}E_{j}t} \times \varepsilon_{j}^{\mathrm{TTT}}(t) \qquad \varepsilon_{j}(t) \equiv \mathrm{ETF}$$

$$+ \sum_{j} c_{j}^{\mathrm{TTP}}(t) \phi_{j}^{\mathrm{TTP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}E_{j}t} \times \varepsilon_{j}^{\mathrm{TTP}}(t)$$

$$+ \sum_{j} c_{j}^{\mathrm{TPP}}(t) \phi_{j}^{\mathrm{TPP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}E_{j}t} \times \varepsilon_{j}^{\mathrm{TPP}}(t)$$

VII. Conclusion of the theoretical part

$$\Psi = \sum_{j} c_{j}^{\mathrm{TTT}}(t) \phi_{j}^{\mathrm{TTT}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TTT}}(t) \qquad \varepsilon_{j}(t) \equiv \mathrm{ETF}$$

$$+ \sum_{j} c_{j}^{\mathrm{TTP}}(t) \phi_{j}^{\mathrm{TTP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TTP}}(t)$$

$$+ \sum_{j} c_{j}^{\mathrm{TPP}}(t) \phi_{j}^{\mathrm{TPP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TPP}}(t)$$

$$\left[\mathbf{H}_{\mathbf{e}} - \mathbf{i}\frac{\partial}{\partial t}\right]\Psi = 0 \quad \equiv \quad \mathcal{M}c = i\mathcal{S}\dot{c}$$

- matrix sizes in non adapted basis for $N_T = N_P = 14$, $(N_T + N_P)^6 \sim 5 \ 10^8$

- matrix sizes in adapted basis (N_T(N_T²-1)/3 + N_T²N_P + N_TN_P(N_P+1)/2)² ~ 3 10⁷

VII. Conclusion of the theoretical part

$$\Psi = \sum_{j} c_{j}^{\mathrm{TTT}}(t) \phi_{j}^{\mathrm{TTT}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TTT}}(t) \qquad \varepsilon_{j}(t) \equiv \mathrm{ETF}$$

$$+ \sum_{j} c_{j}^{\mathrm{TTP}}(t) \phi_{j}^{\mathrm{TTP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TTP}}(t)$$

$$+ \sum_{j} c_{j}^{\mathrm{TPP}}(t) \phi_{j}^{\mathrm{TPP}}(\{\vec{r_{i}}\}) e^{-\mathrm{i}\mathbf{E}_{j}t} \times \varepsilon_{j}^{\mathrm{TPP}}(t)$$

$$\left[\mathbf{H}_{\mathbf{e}} - \mathbf{i}\frac{\partial}{\partial t}\right]\Psi = 0 \quad \equiv \quad \mathcal{M}c = i\mathcal{S}\dot{c}$$

- matrix sizes in non adapted basis for $N_{\rm T}$ = $N_{\rm P}$ = 14, $(N_{\rm T}+N_{\rm P})^6 \sim 5~10^8$

- matrix sizes in adapted basis (N_T(N_T²-1)/3 + N_T²N_P + N_TN_P(N_P+1)/2)² ~ 3 10⁷

$$\sigma_{ij}(v) = \lim_{t \to \infty} 2\pi \int_{-\infty}^{\infty} |c_j(v, b, t)|^2 b db$$

IIX. Results, global processes

 10^{-14} Comparison to experiment: 10^{-15} Very good agreement with experiment ! simple capture 10⁻¹⁶ Cross section (cm²) excitation 10^{-17} 10^{-18} 10^{-19} double capture 10^{-20} 10 0.1 100 1

Energy (keV/amu)

IIX. Results, valence and inner-shell components

Decomposition into sub-procs:

Inner-shell capture becomes dominant over valence above 80keV/amu

IIX. Results, global processes (2)

IX. Results, inner-shell processes

Comparison to 1e simulations

le model fails to reproduce inner excitation.

1e model fails to reproduce second peak at 2keV.
→ Signature of multielectronic processes.

X. β electronic density temporal profile

XI. Two steps model for inner shell processes

XI. Two steps model for inner shell processes

How one can be proove which mechanism is the good one?

How one can be proove which mechanism is the good one?

Answer : Fordid intermediate transitions

- This mechanism is forbidden without valence capture channels.

- This mechanism is forbidden without inner-shell excitation channels.

Forbidden without valence capture channels

Forbidden without inner-shell excitation channels

XIII. Conclusion

Summary:

- Highly effective and easy to use Young diagrams.
- ✓ Code implementation check thanks to the proton-lithium benchmark
- ✓ Quasi one-electron model for p⁺ - Li validated
- ☑ Two steps mechanism analogy in inner-shell processes highlighted

Perspectives:

- Development beyond 3 electrons (in progress)
- Hybride approach using model potential and several active electron

Merci pour votre attention !

<u>Gabriel Labaigt</u>, Alain Dubois LCPMR UMR7614, 11 rue Pierre et Marie Curie, 75005 Paris, France.