Coupled-Cluster Theory

Jürgen Gauss

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Electron Correlation, Size Consistency, and Exponential Ansatz

Electron Correlation: the Helium Atom

figure from T. Helgaker, P. Jørgensen, J. Olsen "Molecular Electronic-Structure Theory"

Electron Correlation: the Helium Atom

figure from T. Helgaker, P. Jørgensen, J. Olsen "Molecular Electronic-Structure Theory"

Magnitude of Correlation Energies

	H ₂ O	HCN
$\mathbf{E}_{\mathbf{HF}}$	-76.068	-92.916
ΔE _{corr}	-0.372	-0.518
ΔE_{rel}	-0.052	-0.044

correlation energies typically < 1% of the total energies

Chemical Relevance of Electron Correlation

0.001 Hartree $\hat{=}$ 2.6255 kJ/mol

correlation energies strongly dependent on valence electrons

correlation effects always important when bonds are broken

Chemical Relevance of Electron Correlation

	dissocati	on energy (D	e) of CO	
	C	Ο	CO	D _e in a.u.
E(HF)	-37.693774	-74.819232	-112.790997	.277991
E(corr)	151537	248978	536591	.136076
E(total)	-37.845307	-75.068210	-113.327588	.414071

Chemical Relevance of Electron Correlation

dissocation energy (D _e) of CO				
	C	Ο	СО	D _e in kJ/mol
E(HF)	-37.693774	-74.819232	-112.790997	729.9
E(corr)	151537	248978	536591	357.3
E(total)	-37.845307	-75.068210	-113.327588	1087.2

Size Consistency

Size Consistency

Exponential Form for the Wavefunction

Exponential Form for the Wavefunction

Connected and Disconnected Excitations

$$\Psi = \prod_{i=A,B,...} (1 + \hat{\tau}_{D,i}) \Phi_{HF}$$

$$\Psi = \Phi_{HF} + \hat{\tau}_{D,A} \Phi_{HF} + \ldots + \hat{\tau}_{D,A} \hat{\tau}_{D,B} \Phi_{HF} + \ldots$$
connected excitations
disconnected excitations
(products of connected excitations)
CI does not differ between connected and disconnected excitations

Standard Coupled-Cluster Theory

Coupled-Cluster Theory

equivalent to FCI, different parameterization of wavefunction

CC Energy and Equations

insertion into Schrödinger-Equation

```
H \exp(T) |0\rangle = E \exp(T) |0\rangle
```

• multiplication from left with exp(-T)

 $\exp(-T)H\exp(T)|0\rangle = E|0\rangle$

- projection onto reference determinant
 - → **CC energy** $E = \langle 0 | \exp(-T) H \exp(T) | 0 \rangle$
- projection onto excited determinants
 - \rightarrow CC equations $0 = \langle \Phi_p | \exp(-T) H \exp(T) | 0 \rangle$

non-linear equations for amplitudes

Algebraic Expressions for CC Equations

 $E = \langle 0 | \exp(-T)H \exp(T) | 0 \rangle \qquad 0 = \langle \Phi_p | \exp(-T)H \exp(T) | 0 \rangle$

Baker-Campbell-Hausdorff expansion

$$\exp(-T) H \exp(T) = H + [H,T] + \frac{1}{2!} [[H,T],T] + \dots$$

Commutator expressions:

$$E = \langle 0|H + [H,T] + \frac{1}{2}[[H,T],T]|0\rangle$$

$$0 = \langle \Phi_p|H + [H,T] + \frac{1}{2}[[H,T],T] + \dots |0\rangle$$

evaluation via Slater-Condon rules, Wick's theorem, diagrammatic rules, computer algebra,

Approximate CC Methods

truncation of the cluster operator T:

cluster operator	approximation	cost
$T=T_1+T_2$	CCSD	N ⁶
$T = T_1 + T_2 + T_3$	CCSDT	N ⁸
$T = T_1 + T_2 + T_3 + T_4$	CCSDTQ	N ¹⁰
$T=T_1+T_2+T_3+T_4+T_5$	CCSDTQP	N ¹²
•••	•••	•••
$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \dots + \mathbf{T}_N$	FCI	

CCD Approximation

CCD Approximation

Algebraic CCD Equations

CC energy:

$$\Delta E = \frac{1}{4} \sum_{ij} \sum_{ab} \langle ij || ab \rangle t_{ij}^{ab}$$

CC equations:

$$\begin{array}{lcl} 0 &= & \langle ab||ij \rangle + P_{-}(ab) \sum_{e} f_{ae} t_{ij}^{eb} - P_{-}(ij) \sum_{m} f_{mi} t_{mj}^{ab} \\ & + \frac{1}{2} \sum_{mn} \langle mn||ij \rangle t_{mn}^{ab} + \frac{1}{2} \sum_{ef} \langle ab||ef \rangle t_{ij}^{ef} \\ & + P_{-}(ij) P_{-}(ab) \sum_{m} \sum_{e} \langle mb||ej \rangle t_{im}^{ae} \\ & - \frac{1}{2} P_{-}(ab) \sum_{mn} \sum_{ef} \langle mn||ef \rangle t_{mn}^{af} t_{ij}^{eb} - \frac{1}{2} P_{-}(ij) \sum_{mn} \sum_{ef} \langle mn||ef \rangle t_{in}^{ef} t_{mj}^{ab} \\ & + \frac{1}{4} \sum_{mn} \sum_{ef} \langle mn||ef \rangle t_{mn}^{ab} t_{ij}^{ef} + \frac{1}{2} P_{-}(ij) P_{-}(ab) \sum_{mn} \sum_{ef} \langle mn||ef \rangle t_{im}^{ae} t_{jn}^{bf} \end{array}$$

Accuracy of CC versus CI Methods

deviation from FCI (in mH) for CO

	CI	CC
SD	30.804	12.120
SDT	21.718	1.009
SDTQ	1.775	0.061
SDTQP	0.559	0.008
SDTQPH	0.035	0.002

calculations with cc-pVDZ basis, frozen core

 $E(FCI) = -113.055853 \text{ H}, \Delta E_{korr} = 306.571 \text{ mH}$

Approximate Treatment of Higher Excitations

Need for Higher Excitations

Additional Approximations for Triples

additional approximations in the amplitude equations

• no storage of amplitudes for triple excitations

reduced scaling in computational cost

\rightarrow CCSDT-1, CCSDT-2, CCSDT-3, CC3, ...

Iterative Approximations to CCSDT

Non-Iterative Approximations to CCSDT

The CCSD(T) Approximation

perturbative corrections on top of CCSD

fourth-order contribution

$$\Delta E_T(4) = \frac{1}{36} \sum_{i,j,k} \sum_{a,b,c} \frac{|w_{ijk}^{abc}|^2}{\varepsilon_i + \varepsilon_j + \varepsilon_k - \varepsilon_a - \varepsilon_b - \varepsilon_c}$$

$$w_{ijk}^{abc} = P(ij/k)P(ab/c)\left\{\sum_{e} \langle bc||ek\rangle \ t_{ij}^{ae} - \sum_{m} \langle mc||jk\rangle \ t_{im}^{ab}\right\}$$

fifth-order contribution

computed with CCSD amplitudes

$$\Delta E_T(5) = \frac{1}{36} \sum_{i,j,k} \sum_{a,b,c} \frac{w_{ijk}^{abc} \tilde{w}_{ijk}^{abc}}{\varepsilon_i + \varepsilon_j + \varepsilon_k - \varepsilon_a - \varepsilon_b - \varepsilon_c}$$
$$\tilde{w}_{ijk}^{abc} = P(ij/k) P(ab/c) \langle bc || jk \rangle t_i^a$$

permutation operator: P(pq/r)Z(pqr) = Z(pqr) + Z(qrp) + Z(rpq)

The CCSD(T) Approximation

Accuracy of Approximate Treatment of Triples

deviation from FCI and CCSDT (in mH) for CO

	Δ(FCI)	Δ(CCSDT)
CCSD	12.12	11.11
CCSDT-1	0.13	-0.88
CCSDT-2	1.52	0.51
CCSDT-3	1.47	0.46
CC3	0.12	-0.89
CCSD(T)	1.47	0.46
CCSD+T	-0.05	-1.06

calculations with cc-pVDZ basis, frozen core

High-Accuracy Quantum Chemistry: Computational Thermochemistry
Computational Thermochemistry

Chemical Accuracy

HEAT = High-accuracy Extrapolated Ab initio Thermochemistry

$$E = E_{\rm HF}^{\infty} + \Delta E_{\rm CCSD(T)}^{\infty} + \Delta E_{\rm CCSDT}^{\rm cc-pVTZ} + \Delta E_{\rm CCSDT(Q)}^{\rm cc-pVDZ} + \Delta E_{\rm rel} + \Delta E_{\rm SO} + \Delta E_{\rm ZPE} + \Delta E_{\rm DBOC}$$

A. Tajti et al., *JCP* 121, 11599 (2004)
Y.J. Bomble et al., *JCP* 125, 064108 (2006)
M.E. Harding et al., *JCP* 128, 113111 (2008)

High-accuracy Extrapolated Ab-initio Thermochemistry

atomization energies of

N₂, H₂, F₂, CO, O₂, C₂H₂, CCH, CH₂, CH, CH₃, CO₂, H₂O₂, H₂O, HCO, HF, HO₂, NO, OH

mean error	max. error	RMS error	
-0.24	0.87	0.42	
Harding et al J Chem Phys 128 114111 (2008)			

chemical accuracy	~	1 kcal/mol
1 kcal/mol	~	1.6 mH
1 kJ/mol	~	0.4 mH

	C ₂ H ₃ Cl	C ₆ H ₆
$E_{ m HF}^{\infty}$	1669.49	4295.3
$\Delta E_{\mathrm{CCSD}(\mathrm{T})}^{\infty}$	609.73	1439.8
$\Delta E_{\mathrm{CCSDT}}^{\mathrm{cc-pVTZ}}$	-3.68	-8.9
$\Delta E_{\mathrm{CCSDT}(\mathbf{Q})}^{\mathrm{cc-pVDZ}}$	2.35	6.8
$\Delta E_{\rm rel}$	-2.42	-4.0
$\Delta E_{\rm SO}$	-4.23	2.1
$\Delta E_{\rm ZPE}$	-110.64	-261.6
ΔE_{DBOC}	0.47	0.7
total	2161.08	
exp.	2159.5±2.5	5466.6±0.5

values in kJ/mol

M.E. Harding et al., J. Phys. Chem. A 111, 13623 (2007)

	C ₂ H ₃ Cl	C ₆ H ₆
$E_{ m HF}^{\infty}$	1669.49	4295.3
$\Delta E_{\rm CCSD(T)}^{\infty}$	609.73	1439.8
$\Delta E_{ m CCSDT}^{ m cc-pVTZ}$	-3.68	-8.9
$\Delta E_{\text{CCSDT}(Q)}^{\text{cc-pVDZ}}$	2.35	6.8
$\Delta E_{ m rel}$	-2.42	-4.0
$\Delta E_{\rm SO}$	-4.23	2.1
ΔE_{ZPE}	-110.64	-261.6
ΔE_{DBOC}	0.47	0.7
total		5466.3
exp.	2159.5±2.5	5466.6±0.5

values in kJ/mol

Harding et al., *JCP*, **135**, 044513 (2011)

Computational Requirements

CCSD(T)/cc-pCV5Z calculation 1200 basis functions	~41 hours (16 node single-core 3.4 GHz Xeon)
CCSDT/cc-pVTZ calculation 264 basis functions	~ 77 hours (dual-core 3.0 GHz Xeon)
CCSDT(Q)/cc-pVDZ calculation	~ 32 hours
114 basis functions	(12 node AMD64)

Bottleneck: large basis calculation at lower CC levels

Harding, Metzroth, Auer, Gauss, JCTC 4, 64 (2008)

Analytic Derivatives in Coupled-Cluster Theory

Importance of Energy Derivatives for Molecular Properties

$rac{\partial E}{\partial x}$	forces on nuclei → geometries, transition states
$\frac{\partial^2 E}{\partial x \partial y}$	force constants → harmonic vibrational frequencies
$\frac{\partial^3 E}{\partial x \partial y \partial z}$	anharmonicities → fundamental frequencies,
$\frac{\partial^2 E}{\partial \epsilon_i \partial \epsilon_j}$	polarizabilities
$\frac{\partial^2 E}{\partial m_i^N \partial B_j}$	nuclear magnetic shieldings → NMR chemical shifts
$\frac{\partial^2 E}{\partial I_i^N \partial I_j^N}$	indirect spin-spin coupling constants

Numerical vs Analytic Differentiation

numerical differentation

e.g.
$$\frac{\partial E}{\partial x} \approx \frac{E(\Delta x) - E(-\Delta x)}{2\Delta x}$$

analytic differentiation

i.e., direct evaluation using analytic expressions

	numerical	analytic
implementation	easy	difficult
efficiency	low	high
precision	limited	high
imaginay perturbations	complex W	yes
frequency dependence	no	yes

analytic differentiation preferable

Gradients via Straightforward Differentiation

energy

$$E = \langle 0 | \exp(-T) H \exp(T) | 0 \rangle$$

gradient

$$\frac{\partial E}{\partial x} = \langle 0 | \exp(-T) \frac{\partial H}{\partial x} \exp(T) | 0 \rangle + \langle 0 | [\exp(-T) H \exp(T), \frac{\partial T}{\partial x}] | 0 \rangle$$

 \Rightarrow integral derivatives

 \Rightarrow perturbed amplitudes

perturbed amplitudes via

$$0 = \langle \Phi_p | \exp(-T) \frac{\partial H}{\partial x} \exp(T) | 0 \rangle + \langle \Phi_p | [\exp(-T) H \exp(T), \frac{\partial T}{\partial x}] | 0 \rangle$$

to be solved for all x; cost similar to CC equations

efficiency?

Gradients Using Lagrange Multipliers

Gradients Using Lagrange Multipliers

Algebraic Form of Λ Equations in the CCD Model

$$0 = \langle ij||ab \rangle + P_{-}(ab) \sum_{e} \lambda_{eb}^{ij} \{f_{ea} - \frac{1}{2} \sum_{m,n} \sum_{f} \langle mn||af \rangle t_{mn}^{ef} \} - P_{-}(ij) \sum_{m} \lambda_{ab}^{mj} \{f_{im} + \frac{1}{2} \sum_{n} \sum_{e,f} t_{mn}^{ef} \langle in||ef \rangle \} + \frac{1}{2} \sum_{mn} \lambda_{ab}^{mn} \{\langle ij||mn \rangle + \frac{1}{2} \sum_{ef} \langle ij||ef \rangle t_{mn}^{ef} \} + \frac{1}{2} \sum_{ef} \lambda_{ef}^{ij} \{\langle ef||ab \rangle + \frac{1}{2} \sum_{mn} \langle mn||ab \rangle t_{mn}^{ef} \} + P_{-}(ij)P_{-}(ab) \sum_{m} \sum_{e} \lambda_{ae}^{im} \{\langle ej||mb \rangle + \sum_{n} \sum_{f} \langle nj||fb \rangle t_{mn}^{ef} \} - \frac{1}{2} P_{-}(ab) \sum_{mn} \sum_{ef} \langle ij||eb \rangle t_{mn}^{ef} \lambda_{af}^{mn} - \frac{1}{2} P_{-}(ij) \sum_{mn} \sum_{ef} \langle mj||ab \rangle t_{mn}^{ef} \lambda_{ef}^{in}$$

(perturbation independent) linear equations for λ amplitudes

Density-Matrix Formulation of CC Gradients

introduction of density matrices

$$\begin{array}{lll} \frac{\partial E}{\partial x} &= & \langle 0 | \ (1+\Lambda) \ \exp(-T) \ \frac{\partial H}{\partial x} \ \exp(T) \ | 0 \rangle \\ \\ &= & \sum_{p,q} D_{pq} \frac{\partial f_{pq}}{\partial x} \ + \ \sum_{p,q,r,s} \Gamma_{pqrs} \frac{\partial \langle pq | | rs \rangle}{\partial x} \\ \hline \mathbf{reduced \ one-particle} \\ & \mathbf{density \ matrix} \end{array} \\ \hline \langle 0 | (1+\Lambda) \exp(-T) \{ a_p^{\dagger} a_q \} \exp(T) | 0 \rangle \end{array}$$

gradients in terms of integral derivatives and density matrices

Algebraic Expressions for CCD Density Matrices

CC Gradients with Orbital Relaxation

CC Gradients with Orbital Relaxation

parameterization of orbital changes

$$c'_{\mu p} = \sum_{q} c_{\mu q} T_{q p}$$

general (non-unitary) transformation

stationarity requirements

(1)
$$\frac{\partial \tilde{E}}{\partial T_{ab}} = 0 \implies I_{ab}$$

(2) $\frac{\partial \tilde{E}}{\partial T_{ia}} = 0 \implies I_{ai} + I_{ia}$
(3) $\frac{\partial \tilde{E}}{\partial T_{ai}} = 0 \implies Z \text{ vector equations for } D_{ai}$
(4) $\frac{\partial \tilde{E}}{\partial T_{ij}} = 0 \implies I_{ij}$

Z-Vector Equations for CC Gradients

Z-vector equations

$$\sum_{e} \sum_{e} D_{em} [\langle ae || im \rangle + \langle am || ie \rangle + \delta_{ae} \delta_{im} (\varepsilon_a - \varepsilon_i)] = -X_{ai}$$

with

$$X_{ai} = \sum_{p,q,r} (\Gamma_{ipqr} \langle ap ||qr \rangle + \Gamma_{qrip} \langle qr ||ap \rangle)$$

$$- \sum_{p,q,r} (\Gamma_{apqr} \langle ip ||qr \rangle + \Gamma_{qrap} \langle qr ||ip \rangle)$$

$$+ \frac{1}{2} \sum_{p,q} D_{pq} (\langle pa ||qi \rangle + \langle pi ||qa \rangle)$$

linear equations for orbital relaxation contribution to D_{ai}

CC Gradients with Orbital Relaxation

differentiation of "extended" energy functional

$$\begin{aligned} \frac{\partial \vec{E}}{\partial x} &= \langle 0 | (1 + \Lambda) \exp(-T) H^x \exp(T) | 0 \rangle \\ &+ 2 \sum_i \sum_a D_{ai} \sum_{\mu,\nu} c^*_{\mu a} \left\{ \frac{\partial h_{\mu\nu}}{\partial x} + \sum_{\sigma,\rho} D^{SCF}_{\sigma\rho} \frac{\partial \langle \mu\sigma | | \nu\rho \rangle}{\partial x} \right\} c_{\nu i} \\ &+ \sum_{p,q} I_{pq} \sum_{\mu,\nu} c^*_{\mu p} \frac{\partial S_{\mu\nu}}{\partial x} c_{\nu q} \end{aligned}$$
contains no derivative of wavefunction parameters

H^{*x*}: Hamiltonian with AO derivative integrals

AO Formulation of CC Gradients

differentiation of "extended" energy functional $\frac{\partial E}{\partial x} = \sum_{p,q} D_{pq} f_{pq}^{(x)} + \sum_{p,q,r,s} \Gamma_{pqrs} \langle pq || rs \rangle^x + \sum_{p,q} I_{pq} S_{pq}^x$ integral derivatives contain no MO derivative contributions reformulation in AO representation $\frac{\partial E}{\partial x} = \sum_{\mu\nu} D_{\mu\nu} \left(\frac{\partial h_{\mu\nu}}{\partial x} + \sum_{\sigma\rho} D_{\sigma\rho}^{HF} \frac{\partial \langle \mu\sigma ||\nu\rho \rangle}{\partial x} \right) + \sum_{\mu\nu\sigma\rho} \Gamma_{\mu\nu\sigma\rho} \frac{\partial \langle \mu\sigma ||\nu\rho \rangle}{\partial x} + \sum_{\mu\nu} I_{\mu\nu} \frac{\partial S_{\mu\nu}}{\partial x}$ $D_{\mu\nu} = \sum c^*_{\mu p} D_{pq} c_{\nu q} \qquad \Gamma_{\mu\nu\sigma\rho} = \sum c^*_{\mu p} c^*_{\nu q} \Gamma_{pqrs} c_{\sigma r} c_{\rho s} \qquad I_{\mu\nu} = \sum c^*_{\mu p} I_{pq} c_{\nu q}$

Implementation of CC Gradients

required steps for gradients

computational cost do not scale with N_{pert}

available for all CC models (CCSD, CCSD(T), CCSDT, CCSDTQ, ..., FCI)

Accuracy of CI and CC Geometrical Parameters

calculated r(OH) for H_2O (in Å)

	CI	CC
SD	0.96 <mark>131</mark>	0.96435
SD(T)		0.96575
SDT	0.96 <mark>251</mark>	0.96583
SDTQ	0.965 <mark>93</mark>	0.96614
SDTQP	0.966 <mark>06</mark>	0.96616
SDTQPH	0.96616	0.96616
FCI	0.96616	

calculations with cc-pVDZ basis

Kállay et al., J. Chem. Phys. 119, 2991 (2003)

Equilibrium Structure of Ferrocene

Accuracy of CC Equilibrium Geometries

12 closed-shell molecules

```
CH<sub>2</sub>, CH<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub>O, HF, N<sub>2</sub>, C=O, HC=N,
HN=C, HC=CH, O=C=O, F_2
```

wave function models

CCSD(T), CCSDT, CCSDTQ

basis sets

cc-p(C)VXZ, X = T,Q,5,6 + additivity assumptions

empirical equilibrium geometries

Heckert et al., Mol. Phys. 103, 2109 (2005)

full CCSDT no improvement over CCSD(T)

CCSDTQ significantly more accurate than **CCSD**(**T**)

High-Accuracy Quantum Chemistry Rotational Spectroscopy and Equilibrium Geometries

Rotational Spectrum of H₂Si=S

investigation of ten isotopologues

McCarthy et al. (Harvard University)

Spectroscopic Parameters of H₂Si=S

	calc.	exp.
A ₀	170336.5	170342.9(14)
B ₀	8025.7	8030.9549(6)
C ₀	765 3.7	7658.0056(6)

all values in MHz

 $fc-CCSD(T)/cc-pV\infty Z + \Delta T/cc-pVTZ + \Delta Q/cc-pVDZ + \Delta core/cc-pCV5Z$

plus CCSD(T)/cc-pV(Q+d)Z vibrational corrections

plus CCSD(T)/aug-cc-pVQZ electronic contributions

Thorwirth et al., Chem. Comm. 5292 (2008)

Equilibrium Structure of H₂Si=S

Thorwirth et al., Chem. Comm. 5292 (2008)

Multireference Coupled-Cluster Theory: Recent Developments and Challenges
Coupled-Cluster Theory

Multiconfigurational Theories

linear combination of determinants

$$|\Psi
angle \;=\; \sum_{\mu}\; |\Phi_{\mu}
angle \; c_{\mu}$$

- non-dynamical/static correlation
- large coefficients for several determinants
- MCSCF, MRCI,
- needed for bond breaking, potential energy surfaces, ...

Multireference Coupled-Cluster Theory

Wish List for MRCC

- size extensivity
- orbital invariance
- low computational cost
- good accuracy

- molecular properties
- excitation energies

- efficient implementation
- multiplet problem
- spin adaptation

Multireference Coupled-Cluster Theory

→ non-commuting operators

$$H \exp(T) |\Phi\rangle = \exp(T) |\Phi\rangle$$

amplitude equations via projection

$$0 = \langle \Phi | \kappa_P^{\dagger} \exp(-T) H \exp(T) | \Phi \rangle$$

energy eigenvalue problem

$$\mathbf{H}^{eff} \mathbf{c} = E \mathbf{c} \qquad H^{eff}_{\mu\nu} = \langle \Phi_{\mu} | \exp(-T) H \exp(T) | \Phi_{\nu} \rangle$$

elimination of redundancies via singular-value decomposition

Accuracy of Internally Contracted MRCC

F.A. Evangelista, J. Gauss, J. Chem. Phys. 134, 114102 (2011)

Large-Scale Application of icMRCC

singlet-triplet splittings (in kcal/mol) in p-benzyne

0	

Basis set	icMRCCSD
cc-pVDZ	3.72
cc-pVTZ	3.73
cc-pVQZ	3.74
extrapol.	3.75
ZPVE	+0.3
Experiment	3.8 ± 0.3

icMRCCSD/cc-pVQZ calculation (two commutators)

F. A. Evangelista, M. Hanauer, A. Köhn, J. Gauss, J. Chem. Phys. 136, 204108 (2012)

Checklist for icMRCC

size extensivity	(yes)
orbital invariance	yes
scaling with N _{ref}	no
good accuracy	yes
efficient implementation	???
spin adaptation	in progress
molecular properties	numerically
excitation energies	in progress

main developers: M. Hanauer, A. Köhn (Mainz)

Multireference Coupled-Cluster Theory

Jeziorski-Monkhorst Ansatz

Redundancy Problem

Mk-MRCC Theory

Mahapatra, Datta, Mukherjee, J. Chem. Phys. 110, 6171 (1999)

Mk-MRCC Theory

$$\Rightarrow \sum_{\mu} \exp(T_{\mu}) Q \exp(-T_{\mu}) H \exp(T_{\mu}) |\Phi_{\mu}\rangle c_{\mu}^{\alpha}$$

$$+ \sum_{\nu} \sum_{\mu} \exp(T_{\nu}) |\Phi_{\mu}\rangle H_{\mu\nu}^{eff} c_{\nu}^{\alpha} = E_{\alpha} \sum_{\mu} \exp(T_{\mu}) |\Phi_{\mu}\rangle c_{\mu}^{\alpha}$$
interchange μ and ν in second term
$$\exp(T_{\mu}) Q \exp(-T_{\mu}) H \exp(T_{\mu}) |\Phi_{\mu}\rangle c_{\mu}^{\alpha}$$

$$+ \sum_{\nu} \exp(T_{\nu}) |\Phi_{\mu}\rangle H_{\mu\nu}^{eff} c_{\nu}^{\alpha} = E_{\alpha} \exp(T_{\mu}) |\Phi_{\mu}\rangle c_{\mu}^{\alpha}$$
lift sum over $\mu \implies$ sufficiency conditions

Mahapatra, Datta, Mukherjee, J. Chem. Phys. 110, 6171 (1999)

Mk-MRCC Theory

 $\exp(T_{\mu}) \ Q \ \exp(-T_{\mu}) \ H \ \exp(T_{\mu}) \ |\Phi_{\mu}\rangle \ c^{\alpha}_{\mu}$

$$+\sum_{\nu} \exp(T_{\nu}) |\Phi_{\mu}\rangle H^{eff}_{\mu\nu} c^{\alpha}_{\nu} = E_{\alpha} \exp(T_{\mu}) |\Phi_{\mu}\rangle c^{\alpha}_{\mu}$$

multiplication with exp(-T_{μ}) and projection on $\Phi_q(\mu)$

 $\langle \Phi_q(\mu) | \exp(-T_\mu) H \exp(T_\mu) | \Phi_\mu \rangle c^{\alpha}_\mu$

$$+ \sum_{\nu(\neq\mu)} \langle \Phi_q(\mu) | \exp(-T_{\mu}) \exp(T_{\nu}) | \Phi_{\mu} \rangle H_{\mu\nu}^{\text{eff}} c_{\nu}^{\alpha} = 0$$

Mk-MRCC amplitude equations

Mahapatra, Datta, Mukherjee, J. Chem. Phys. 110, 6171 (1999)

Mk-MRCCSD and **Mk-MRCCSDT**

Orbital Invariance of Mk-MRCC

F. A. Evangelista, J. Gauss, J. Chem. Phys. 134, 044101 (2010)

Tools for Calculating Properties in MRCC

Mk-MRCC Gradients: Example

Jagau, Prochnow, Evangelista, Gauss, J. Chem. Phys. 132, 144110 (2010)

Mk-MRCC Gradients: Example

Jagau, Prochnow, Evangelista, Gauss, J. Chem. Phys. 132, 144110 (2010)

Mk-MRCCSDT Gradients

E. Prochnow, J. Gauss, to be published

- treat SO effects using degenerate perturbation theory
- zeroth-order wavefunctions $\Pi_{1/2}$ and $\Pi_{3/2}$ (Mk-MRCC)
- SO splittings

$$\begin{split} \Delta E_{SO} &= 2 \mid \langle \Pi_{1/2} \mid \hat{H}_{SO} \mid \Pi_{1/2} \rangle \mid \\ &= 2 \frac{d \ E(\Pi_{1/2})}{d \ \lambda_{SO}} \qquad \begin{array}{l} \text{Mk-MRCC} \\ \text{gradients} \end{array} \end{split}$$

• spatially averaged π orbitals & mean-field SO treatment

L.A. Mück and J. Gauss, J. Chem. Phys. 136, 111103 (2012)

SO splittings (in cm⁻¹):

Species	Mk-MRCC	Exp.
ОН	135.1	139.2
SH	375.2	377.0
SeH	1707.9	1764.4
ClO	312.3	320.3
BrO	918.6	975.4

Mk-MRCCSD/cc-pCVQZ(-g) calculations

L.A. Mück and J. Gauss, J. Chem. Phys. 136, 111103 (2012)

Dynamical Polarizability of CH₂

T.-C. Jagau, J. Gauss, J. Chem. Phys. 137, 044115 (2012)

Dynamical Polarizability of p-Benzyne

T.-C. Jagau, J. Gauss, J. Chem. Phys. 137, 044115 (2012)

Response Theory for Excited States

Mk-MRCCSD Excitation Energies

T.-C. Jagau, J. Gauss, J. Chem. Phys. 137, 044116 (2012)

Mk-MRCCSD Excitation Energies: SiS₂

Checklist for Mk-MRCC

excitation energies	wrong nole structure
molecular properties	gradients
spin adaptation	(yes)
efficient implementation	yes
good accuracy	???
scaling with N _{ref}	yes
orbital invariance	no
size extensivity	yes

Conclusions and Outlook

• CC theory: main tool for high-accuracy calculations

→ computational thermochemistry, gas-phase spectroscopy current challenges:

- large molecules \rightarrow local correlation, pair natural orbitals, ...
- basis-set convergence → explicitly correlated CC
- heavy-elements → relativistic four- and two-component CC
- strong correlation → multi-reference CC